

Assumptions & Objectives Assumptions **Objectives** Entry/Mid level engineers To provide an working in ISP/service

- provider network
- · Are not familiar or up-todate with technology detail
- Has not got advance experience to work with network equipment
- Are interested in Internetworking

Asia

🖉 APNIC

- technologies
- understanding of current Internet protocols
- To provide a working knowledge of the procedures managing Internet
- To keep up updated knowledge of future Internet technology

1

Overview

- Internet Fundamental
 - -Internet Protocols some revision

 - IP addressing basic
 IP Routing basic
 Introduction to DNS & RevDNS
 - IPv6 overview

📀 APNIC

Asia

📀 APNIC

- IPv6 RevDNS
 IPv6 transition technologies
- IX Policies
- Exercise on IX and IPv6 tunnelling

Signal, Data and Information

- Data is transmitted over a physical network as a sequence of binary digits (bits 0s and 1s).
- · The "sending" process involves the source device generating a pattern of signals (voltages, light patterns, wavelengths).
- · The pattern of signals generated represents the sequence of bits making up the data.
- These signals can be "read" by any device attached to .
- the same physical network. "Reading" means identifying the signals to receive the .
- same pattern of bits as generated by the sender.

tre	What is Protocols
rk Information Centre	 All data is transmitted in the same way irrespective of what the data refers to, whether it is clear or encrypted.
Asia Pacific Network	 The data communication protocols define the structure or pattern for the data transferred – this gives it its meaning.
As	 The Protocols define
APNIC	 functions or processes that need to be carried out in order to implement the data exchange and the
∀ ⊘	 information required by these processes in order for them to accomplish this

Protocol Models

- In the late 1970s the ISO (International Standards Organisation) introduced a model defining the functions for data communications between two computers in a 7 layer model - The OSI (Open System Interconnection) Model
- Not a protocol but a framework intended to facilitate the design of protocols for inter-computer communication.
 Defines the processes required at each of the
- modularised layers
- OSI is "protocol independent"

Asia

📎 APNIC

Packets

Asia

C APNI

N

- A packet then contains a set of data made of the various headers from each layer including the data generated by the application layer.
- The packet is "built" during a sending process when each layer determines the information needed for its tasks, and adds this header information
- · The layer will then take this information, with any other data it might have received from a higher layer, and pass it as one set of data to a lower layer.
- This process is then repeated and is called encapsulation

Internet Protocol (IP)

- IP is an unreliable, connectionless delivery protocol - A best-effort delivery service - No error checking or tracking (no guarantees – Post Office) Every packet treated independently
 Can follow different routes to same destination IP leaves higher level protocols to provide reliability services (if needed) IP provides three important definitions: - basic unit of data transfer specifying exact format of the headers
 routing function
 choosing path over which data will be sent APNI rules about delivery
 how IP datagrams should be processed
 how to deal with unusual events (errors) R

Centre		IP D	atagram format				
Network Information		tasks - information r	der information for the data it requires for its needed for routing and delivery stination IP addresses				
Asia Pacific	 It has nothing to do with higher layer headers or data and can transport arbitrary data 						
		Datagram	Datagram data area				
Ī		header					
📎 APNIC							
Ø							
-							

Centre	IPv4	4 Data	igram hea	adeı	fields		
nation	Bit 0		Bit 15	Bit 16	В	it 31	
Pacific Network Information	Version (4)	Header Length (4)	Priority & Type of Service (8)		Total Length (16)	1	
Networ		Identifica	tion (16)	6) Flags (3) Fragment offset			
Pacific	Time to live (8)		Protocol (8)	Header checksum (16)		20 Byte	
Asia	Source IP Address (32)						
	Destination IP Address (32)						
NIC	Options (0 or 32 if any)						
📎 APNIC			Data (va	ries if ar	уу)		
1							

•				r etween IP		ader and Header	IPv6 hea	der
Version 4 bits	IHL 4bits	Type of Service 8bits		Total Length 16bits	Versior 4bits	Traffic Class 8 bits	Flow Label 20 bits	
		fication 6 bits	Flags 4 bits	Fragment Offset 12 bits		Payload Length 16 bits	Next Header 8 bits	Hop Limit 8 bits
TTL 8 bits		Protocol Header 8 bits	ŀ	leader Checksum 16 bits	Source 128 b	e Address ts		
Source 32 bits	e Address							
Dest 32 bi	nation Add	iress						
IP op 0 or 1	tions nore bits							
					Dest 128	nation Address sits		
	P Header L Time to Live		liminated	in IPv6				
	⇒	Enhanced in	IPv6					
		Enhanced in	IPv6					
	⇒ <mark> </mark>	Enhanced in	IPv6					

OverviewInternet Fundamental Internet Protocols – some revision IP addressing basic IP Routing basic IP Routing basic IProduction to DNS & RevDNS IPv6 overview IPv6 ransition technologies IX Policies Exercise on IX and IPv6 tunnelling

Overview

Asia Pacific

- IP addressing Issues and solution
- Variable Length Subnet Mask (VLSM)
 Written exercise : VLSM calculation
- Summarisation of routes
- Classless InterDomain routing (CIDR)
- Internet registry IP management procedure
 - Written exercise : Route summarisation

	• Subnet 192.168	VLSM example 8.0.0/24 into smaller s with /30 (point-to-point)	. ,
	Description	Decimal	Binary
Asia Pacific	Network Address	192.168.0.0/30	x.x.x.00000000
	1 st valid IP	192.168.0.1/30	x.x.x.00000001
	2 nd valid IP	192.168.0.2/30	x.x.x.00000010
2	Broadcast address	192.168.0.3/30	x.x.x.00000011

-	/LSM example .0.0/24 into smaller s th /27	
Description	Decimal	Binary
Network Address	192.168.0.32/27	x.x.x.00000000
Valid IP range 192.168.0.3	x.x.x.00000001	
102.100.000	5 102.100.0.02	x.x.x.00000010
Broadcast address	192.168.0.63/30	x.x.x.00011111

•	Subnet 19	ing VLSM 02.168.0.0/24 mask with /27	-		
	Description	Decimal	VSLM	Host	Host range
	1 st subnet	192.168.0.0/27	x.x.x.000		0-31
	2 nd subnet	192.168.0.32/2 7	x.x.x.001	00000	31-63
	3 rd subnet	192.168.0.64/2 7	x.x.x.010		64-95
	4 th subnet	192.168.0.96/2	x.x.x.011	1	96-127

- Support for easy troubleshooting, upgrades and manageability of networks
- Performance optimisation

Asia Pacific

- Scalable and more stable
- Less network resources overhead (CPU, memory, buffers, bandwidth)
- Faster routing convergence

Centre	Classless & classful addressing								
Information (<u>Classful</u>	Class	sless		Best Current Practice				
Asia Pacific Network Inf	A 128 networks x 16M Hosts 16K networks x 64K hosts B 2M retworks x 256 hosts C P	Addresses 8 16 32 64 128 256	Prefix /29 /28 /27 /26 /25 /24	Classful 1 C	Net mask 255.255.255.248 255.255.255.240 255.255.255.255.24 255.255.255.128 255.255.255.128 255.255.255.0				
📎 APNIC	Obsolete • inefficient • depletion of B space • too many routes from C space	 4096 8192 16384 32768 65536 			 255.255.24 255.255.24 255.255.192 255.255.128 255.255.00 *				

Prefix routing / CIDR

 Prefix routing commonly known as classless inter domain routing (CIDR) - It allows prefix routing and summarisation with the routing tables of the

- Internet
- RFCs that talks about CIDR

entre

acific

Asia

- RFC 1517 Applicability statement for the implementation of CIDR
- RFC 1517 Applicability statement for the implementation of CDR
 RFC 1518 Architecture for IP address allocation with CIDR
 RFC 1519 CIDR : an address assignment and aggregation strategy
 RFC 1520 Exchanging routing information access provider boundaries in a CIDR environment

Centre	Route summarisation
Pacific Network Information C	 Allows the presentation of a series of networks in a single summary address.
🖉 🖉 APNIC 🛛 Asia Pacific Netwo	 Advantages of summarisation Faster convergence Reducing the size of the routing table Simplification Hiding Network Changes Isolate topology changes

Route sum	narisation	
	8.0.0/24 and 192.168. e a bigger block of add	
Network	Subnet Mask	Binary
192.168.0.0	255.255.255.0	x.x.0000000.
192.168.1.0	255.255.255.0	x.x.0000001.
Summary	192.168.0.0/23	x.x.00000000.
192.168.0.0	255.255.254.0	x.x.00000000.

Configuring	summarisation
-------------	---------------

Asia

📀 APNIC

entre

🖉 APNIC

- · Manual configuration is required with the use of newer routing protocols
 - Each of the routing protocols deal with it in a slightly different way

· All routing protocols employ some level of automatic summarisation depending on the routing protocol behavior (be cautious about it)

Manual summarisation

 Manual summarisation uses by OSPF are more sophisticated.

- Sends the subnet mask including the routing update which allows the use of VLSM and summarisation

· Performs a lookup to check the entire database and acts on the longest match

Discontiguous networks · A network not using routing protocol that support VLSM creates problem - Router will not know where to send the traffic - Creates routing loop or duplication • Summarisation is not advisable to network that are Asia discontiguous - Turn off summarisation 📀 APNIC

- Alternative solution but understand the scaling limitation
 Find ways to re-address the network
- Can create disastrous situation

OverviewInternet Fundamental Internet Protocols – some revision IP addressing basic IP Routing basic IP Routing basic IPv6 overview IPv6 overview IPv6 transition technologies IX Policies Exercise on IX and IPv6 tunnelling

Objectives

Asia Pacific

- To be able to gain knowledge about the foundation of the routing protocols
- Classify the difference between a classful and classless routing architecture
- Compare distance vector and link-state protocol operation
- Describe the information written inside the routing table

18

Asia Pacif

APNIC

- Mechanism to update Layer 3 routing devices, to route the data across the best path
- Learns participating routers advertised routes to know their neighbors
- Learned routes are stored inside the routing table

Distinction between *routed* and *routing* protocols

Routed protocols

Centre

Asia F

- Layer3 datagram that carry the information required in transporting the data across the network
- Routing protocols
 - Handles the updating requirement of the routers within the network for determining the path of the datagram across the network

Routed protocol	Routing protocol
AppleTalk	RTMP, AURP, EIGRP
IPX	RIP, NLSP, EIGRP
Vines	RTP
DecNet IV	DecNet
IP	RIPv2, OSPF, IS-IS, BGP and (Cisco Systems proprietary) EIGRP,

Metric field

Asia Pacific

- To determine which path to use if there are multiple paths to the remote network
- · Provide the value to select the best path
- But take note of the administrative distance selection process ☺

Routing protocol	Metric
RIPv2	Hop count
EIGRP	Bandwidth, delay, load, reliability, MTU
OSPF	Cost (the higher the bandwidth indicates a lowest cost)
S-IS	Cost

Route sources	Default distance
Connected interface	0
Static route out an interface	0
Static route to a next hop	1
External BGP	20
GRP	100
DSPF	110
S-IS	115
RIP v1, v2	120
EGP	140
nternal BGP	200
Jnknown	255

Principles of addressing

- Separate customer & infrastructure address pools
 - Manageability

entre

acific

Asia

📀 APNIC

Different personnel manage infrastructure and assignments to customers

Scalability

• Easier renumbering - customers are difficult, infrastructure is relatively easy

Purpose of naming

- · Addresses are used to locate objects
- Names are easier to remember than numbers
- You would like to get to the address or other objects using a name
- DNS provides a mapping from names to resources of several types

📀 APNIC

entre

📀 APNIC

Asia

Naming History1970's ARPANET

- Host.txt maintained by the SRI-NIC
- pulled from a single machine
- Problems
 - traffic and load
 - Name collisions
 - Consistency

 DNS created in 1983 by Paul Mockapetris (RFCs 1034 and 1035), modified, updated, and enhanced by a myriad of subsequent RFCs

DNS

Asia

- A lookup mechanism for translating objects into other objects
- A globally distributed, loosely coherent, scalable, reliable, dynamic database
- Comprised of three components – A "name space"
 - Servers making that name space available
 - Resolvers (clients) which query the
 - servers about the name space

entre	DNS Features: Global Distribution
Asia Pacific Network Information Centre	 Data is maintained locally, but retrievable globally
c Network	- No single computer has all DNS data
Asia Pacifi	 DNS lookups can be performed by any device
📀 APNIC	 Remote DNS data is locally cachable to improve performance

e

DNS Features: Loose Coherency

entre

📀 APNIC

- The database is always internally consistent

 Each version of a subset of the database (a zone) has a serial number
 The serial number is incremented on each database change
- Changes to the master copy of the database are replicated according to timing set by the zone administrator
- Cached data expires according to timeout set by zone administrator

DNS Features: Scalability No limit to the size of the database One server has over 20,000,000 names Not a particularly good idea No limit to the number of queries 24,000 queries per second handled easily Queries distributed among masters, slaves, and caches

Centre	DNS Features: Reliability
Pacific Network Information C	 Data is replicated – Data from master is copied to multiple slaves
Asia Pacific Net	 Clients can query – Master server – Any of the copies at slave servers
📎 APNIC	Clients will typically query local caches

DNS Features: Dynamicity

entre

Asia Pacific

📀 APNIC

Asia Pacific

APNIC

Database can be updated dynamically
 _Add/delete/modify of any record

 Modification of the master database triggers replication

Only master can be dynamically updated
Creates a single point of failure

Concept: DNS Names

- How names appear in the DNS
 Fully Qualified Domain Name (FQDN)
 www.APDIC.NET.
 lobels apprended by data
 - labels separated by dots
- DNS provides a mapping from FQDNs to resources of several types
- Names are used as a key when fetching data in the DNS

Delegation

Centre

Asia

📀 APNIC

📀 APNIC

- Administrators can create subdomains to group hosts

 According to geography, organizational affiliation or any other criterion
- An administrator of a domain can delegate responsibility for managing a subdomain to someone else

- But this isn't required

- The parent domain retains links to the delegated subdomain
- The parent domain "remembers" who it delegated the subdomain to

Authority is delegated from a parent and to a child

Concept: Name Servers

- Name servers answer 'DNS' questions
- Several types of name servers
 - Authoritative servers

Centre

Asia

- master (primary)
- slave (secondary)
- (Caching) recursive servers
- also caching forwarders
 Mixture of functionality

entre	Concept: Resource Records				
Information C	 Resource records consist of it's name, it's TTL, it's class, it's type and it's RDATA 				
Network	TTL is a timing parameter				
Pacific N	IN class is widest usedThere are multiple types of RR records				
Asia F	 Everything behind the type identifier is called rdata 				
APNIC	www.apnic.net. 3600 IN A 10.10.10.2				
Ø	Label tti type rdata class				

Centre	Example: RI	Rs in a zo	one file	
nformation	apnic.net. 7200 IN	SOA ns.a	apnic.net. admin.apnic.ne	et.
Pacific Network Inform	ſ	14400 ; 345600 ;	501 ; Serial ; Refresh 12 hours ; Retry 4 hours ; Expire 4 days ; Negative cache 2 hou	urs)
sia Pa	apnic.net.		NS ns.apnic.net.	
Ä	apnic.net.	7200 IN	NS ns.ripe.net.	
	whois.apnic.net.	3600 IN	A 193.0.1.162	
APNIC	host25.apnic.net.	2600 IN class	A 193.0.3.25	rdata
Ø				

Centre	Concept: TTL and other Timers
Pacific Network Information Centre	 TTL is a timer used in caches An indication for how long the data may be reused
Asia Pacific N	 Data that is expected to be 'stable' can have high TTLs
📎 APNIC	 SOA timers are used for maintaining consistency between primary and secondary servers

To remember...

Asia Pacific

- Multiple authoritative servers to distribute load and risk:
 - Put your name servers apart from each other
- Caches to reduce load to authoritative servers and reduce response times
- SOA timers and TTL need to be tuned to needs of zone. Stable data: higher numbers

Performance of DNS

- · Server hardware requirements
- · OS and the DNS server running
- How many DNS servers?
- · How many zones expected to load?
- How large the zones are?
- Zone transfers
- Where the DNS servers are located?
- Bandwidth

R

🖉 APNIC

Asia

APNIC

Performance of DNS

- Are these servers Multihomed?
- How many interfaces are to be enabled for listening?
- How many queries are expected to receive?
- Recursion
- Dynamic updates?
- DNS notifications

Writing a zone file Zone file is written by the zone administrator Zone file is read by the master server and it's content is replicated to slave servers What is in the zone file will end up in the database Because of timing issues it might take some time before the data is actually visible at the client side

Centre	Zone file short cuts: repeating last name
Pacific Network Information	apnic.net. 3600 IN SOA NS1.apnic.net. admi n\.email.apnic.net. (202021301 ; serial 300 ; refrash 100 ; refersy 100 ; neg. answ. Ttl 3600 IN NS NS1.apnic.net. 3600 IN NS NS1.apnic.net. 3600 IN NX 50 mail.apnic.net. 3600 IN NX 50 mail.apnic.net.
Asia	3600 IN TXT "Demonstration and test zone" NS1.apnic.net. 3600 IN A 203.0.0.4 NS2.apnic.net. 3600 IN A 193.0.0.202
0	localhost.apnic.net. 4500 IN A 127.0.0.1
🖉 APNIC	NS1.apnic.net. 3600 IN A 203.0.0.4 www.apnic.net. 3600 IN CNAME IN.apnic.net.

Centre	Zone file short cuts: default TTL
Pacific Network Information	<pre>STTL 3600 ; Default TTL directive apnic.net. IN SOA NS1.apnic.net. admin\.email.apnic.net. (</pre>
Asia	IN TXT "Demonstration and test zone" NS1.apric.net. IN A 203.0.0.4 NS2.apric.net. IN A 193.0.0.202
0	localhost.apnic.net. 4500 IN A 127.0.0.1
📎 APNIC	NSL.agnic.net. IN A 203.0.0.4 www.agnic.net. IN CNAME NSL.agnic.net.

Centre	Zone file short cuts: ORIGIN
Asia Pacific Network Information (<pre>STTL 3600 ; Default TTL directive SORIGIN apnic.net. 0 IN SOA NS1 admin\.email.apnic.net. (2002021301 ; serial 1 10 ; serial 30 ; retry 1 W ; retry 3600) ; neg. answ. Ttl IN NS NS1 IN NS NS2 IN NK 50 mailhost IN NK 150 mailhost2</pre>
U	IN TXT "Demonstration and test zone" NS1 IN A 203.0.0.4 NS2 IN A 193.0.0.202
APNIC	localhost 4500 IN A 127.0.0.1
AP	NSI IN A 203.0.0.4 www IN CNAME NSI
R	
Centre	Zone file short cuts: Eliminate IN
------------------------------------	---
Asia Pacific Network Information C	<pre>\$TTL 3600 ; Default TTL directive SORIGIN apnic.net.</pre>
υ	TXT "Demonstration and test zone" NS1 A 203.0.0.4 NS2 A 193.0.0.202
📎 APNIC	localhost 4500 A 127.0.0.1 NS1 A 203.0.0.4 www CNAME NS1

Overview

entre

📀 APNIC

Asia Pacific

📀 APNIC

Principles

- Creating reverse zones
- Setting up nameservers
- Reverse delegation procedures

What is 'Reverse DNS'?

- 'Forward DNS' maps names to numbers

 svc00.apnic.net -> 202.12.28.131
- 'Reverse DNS' maps numbers to names – 202.12.28.131 -> svc00.apnic.net

create and manage reverse zones - Details can be different

Centre	Creating reverse zones - contd
	Files involved
Inform	– Zone files
Network Information	Forward zone file e.g. db.domain.net
a Pacific	• Reverse zone file - e.g. db.192.168.254
Asia	– Config files
	 <named.conf></named.conf>
Ī	– Other
APNIC	Hints files etc.
Ø	– Root.hints

Centre	A reverse zone example
isia Pacific Network Information Ce	<pre>\$ORIGIN 1.168.192.in-addr.arpa. (% 3600 IN SOA test.company.org. (sys\.admin.company.org. 2002021301 ; serial lh ; refresh 30M ; retry IW ; expiry W ; expiry 3600) ; neg.answ.ttl NS ns.company.org.</pre>
APNIC	NS ns2.company.org. 1 PTR gw.company.org. router.company.org. 2 PTR ns.company.org.
AF 🚫	; auto generate: 65 PTR host65.company.org \$GENERATE 65-127 \$ PTR host8.company.org.

APNIC & ISPs responsibilities

APNIC

entre

Asia

🖉 APNIC

- Manage reverse delegations of address block distributed by APNIC
- Process organisations requests for reverse delegations of network allocations
- Organisations
 - Be familiar with APNIC procedures
 - Ensure that addresses are reverse-mapped
 - Maintain nameservers for allocations
 - Minimise pollution of DNS

Centre	Subdomains of in-addr.arpa domain
Pacific Network Information C	 Example: an organisation given a /20 192.168.0.0/20 (a lot of zone files!) – have to do it per /24) Zone files
🗞 APNIC 🔤 Asia P	0.168.192.in-addr.arpa. 1.168.192.in-addr.arpa. 2.168.192.in-addr.arpa. : :
A 🚫	15.168.192.in-addr.arpa.

Reverse delegation procedures

- Standard APNIC database object,
 can be updated through MyAPNIC, Online form or via email.
- Nameserver/domain set up verified before being submitted to the database.
- Protection by maintainer object
- Zone file updated instantly

Asia

📀 APNIC

on Centre	Whois d	lomain object	Reverse Zone
APNIC Asia Pacific Network Information	<pre>domain: descr: admin-c: tech-c: zone-c: nserver: nserver: nserver: nserver: mnt-by: mnt-lower:</pre>	28.12.202.in-addr.arp in-addr.arpa zone for 2 DNS3-AP DNS3-AP DNS3-AP ns.telstra.net rs.arin.net ns.myapnic.net svc00.apnic.net ms.apnic.net MAINT-APNIC-AP MAINT-DNS-AP	8.12.202.in-addr.arpa Contacts Name Servers
API	changed: source:	inaddr@apnic.net 1999 APNIC	90810 Maintainers (protection)

Centre	So what will happen after the exhaustion?
Asia Pacific Network Information Centre	 The Internet will not stop but its growth will be impacted
letwork	Who will be impacted?
cific N	– ISPs
Asia Pa	 Sustaining their business models will become more difficult unless you have huge IPv4 address blocks
υ	– End users
📎 APNIC	Cost of access to the Internet will increase
Q1	

Some possible scenarios

 So what will happen after the IPv4 unallocated address space exhaustion?

- Persist in IPv4 networks using more NATs
 Address markets emerging for IPv4
- Routing fragmentation
- IPv6 transition

entre

Asia

📀 APNIC

Asia

🗞 APNIC

IPv4 NATs today

- Today NATs are largely externalised costs for ISPs
 - Customers buy and operate NATs
 - Applications are tuned to single-level-NAT traversal
 - Static public addresses typically attract a traffic premium in the real market
 - For retail customers, IP addresses already have a market price!

Centre	The "Just" add more NATs option
Information	 Demand for increasing NAT "intensity"
forme	 Shift ISP infrastructure to private address realms
Network Inf	 Multi-level NAT deployment both at the customer edge and within the ISP network
Pacific Net	 This poses issues in terms of application discovery and adaptation to NAT behaviours
	 End cost for static public addresses may increase
Asia	 How far can NATs scale?
	 Not well known
	 What are the critical resources here
APNIC	 Nat biding capability and state maintenance, NAT packet throughput, private address pool sizes and application complexity
Ø	

Recovering unused IPv4 address Centre space 46 x /8 (in various prefixes) un-routed address spaces existing APNIC and LACNIC have active reclamation processes processes However, recovery of such address space is not easy Most of historical address space exist in USA Historical address space: address distributed before the RIR mechanism kicked into the system Reclamation processes are not only likely to be lengthy and difficult, but also expensive Most likely "address market" will emerge Amount of recoverable address space is relatively insignificant Eraomented address blocks Asia 📀 APNIC Fragmented address blocks Increase injection to the global routing table Only provides limited solutions

Centre	Reuse of 240/4 address space for private use
Pacific Network Information (APNIC's Paul Wilson and Geoff Huston submitted an Internet draft recently draft-wilson-class-e
Asia Pacific Netwo	 Proposes the redesigtation of the IPv4 address block 240/4 from "Future Use" (originally designated to IETF as "Class E") to "Limited Use for Large Private Internet"
A	 To prepare the future demands of large networks that will be deployed behind NAT
📎 APNIC	 Such networks large enough to exceed the exisitng private address space available under RFC1918 (defining IPv4 private address space)
Ø	To allow an extended period of dual stack IPv4 /IPv6 networks

Transition to IPv6

Asia P

📀 APNIC

📀 APNIC

- But IPv6 is not backward compatible with IPv4 on the wire
- So the plan is that we need to run some form of a "dual stack" transition process
 - running both IPv4 and IPv6 protocol stacks in the host
 - Or dual stack via protocol translating proxies

IPv6 is the only alternative technology mature enough to be successfully deployed

What is IPv6?

- IPv6 is a new version of the Internet layer protocol (IP) in the TCP/IP suite of protocols.
- It replaces the current Internet protocol layer commonly referred to as IPv4

Ref: IPv6 Network Administra

Centre	ICMPv6
Information	 ICMPv6 is very different from ICMP in IPv4 Encompasses the roles filled by ICMP, IGMP (Internet Group Management Protocol) and ARP in the IPv4 world
cific Network	 ICMPv6 neighbour discovery packets: two types of packets
Asia Paci	 Neighbour Solicitation Very similar to an ARP request packet Send a request to translate a target IPv6 unicast address into a link-layer address "The owner of this IPv6 address please contact me"
🗞 APNIC	Sent via solicited node multicast address (not broadcast) * Reserved address space Ff02:::ff00:0/104 Neighbour Advertisement
A 🔇	 Reply to the above query: "I am the MAC address for the IPv6 address you are looking for" Used during Duplicate Address Detection (DAD)

Main IPv6 benefits - summary

Expanded addressing capabilities

entre

Asia

📀 APNIC

- Server-less autoconfiguration ("plug-n-play") and reconfiguration
- More efficient and robust mobility mechanisms
- Built-in, strong IP-layer encryption and authentication (but must be configured)
- Streamlined header format and flow identification
- Improved support for options / extensions

RFC2460 "Internet Protocol Version 6 Specification" Changes from IPv4 to IPv6: Expanded addressing capabilities Header format simplification Improved support for extensions and options Flow labeling capability Authentication and privacy capabilities

Pv4	Head			r etween IPv		ader and I Header	Pv6 head	der
Version 4 bits	IHL 4bits	Type of Service 8bits		Total Length 16bits	Version 4bits	Traffic Class 8 bits	Flow Label 20 bits	
		fication 5 bits	Flags 4 bits	Fragment Offset 12 bits		Payload Length 16 bits	Next Header 8 bits	Hop Lin 8 bits
TTL Protocol Header Header Checksum 8 bits 8 bits 16 bits			Source 128 bits	Address				
Source Address 32 bits								
Destination Address 32 bits								
IP opt 0 or n	tions nore bits							
				Destin 128 bi	ation Address ts			
IHL=IP Header Length TTL=Time to Live Eliminated in IPv6								
	⇒	Enhanced in	IPv6		_			
	→	Enhanced in	IPv6					
Enhanced in IPv6			IPv6					

Version	4 bits	Version of the protocol = 6
Traffic class	1 byte	Used to distinguish priorities of IPv6 packets
Flow label	20 bits	Used to label sequences of packets that require the same treatment for more efficient processing on routers
Payload length	2 bytes	Length of data carried after IPv6 header
Next header	1 byte	Contains a protocol number or a value for an extension header
Hop limit	1 byte	Number of hops. Decremented by one by every router
Source address	16 bytes	
Destinatio n address	16 bytes	

Extension	headers

- The current IPv6 specification defines 6 extension Headers:
 - Hop-by-hop options header
 Routing header
 Fragment header
 Destination options header
 Costination header
 Formerted costification header

Asia

APNIC

R

- Encrypted security payload header •
- There can be zero, one, or more than one Extension header in one IPv6 packet
- Are placed between the IPv6 header and the upper-
- \cup
 - •
- Is identified by the Next Header in the preceding header Provide flexibility for developing additional Extension Headers in the future if necessary APNI ٠ N
 - New Extension Headers can be added/used without changing the IPv6 header

IPv6 fragmentation

- IPv6 manages fragmentation differently to IPv4
- · In IPv4 intermediate routers fragment a datagram that is larger than the MTU (maximum transfer unit) of the network over which it must travel
- In IPv6 fragmentation is restricted to the original source - the source machine must perform
- a PATH MTU discovery packet is sent to determine the MTU to use or a default MTU value is used.
- The fragmentation fields (identification, flags and offset value) are therefore contained in an extension header.

	IPv6 addressing
Asia Pacific Network Information Centre	 IPv6 addressing 128 bits of address space Divided into eight 16 bit fields, each represented as a 4 digit hexadecimal number. X:X:X:X:X:X:X:X (X=16 bit number, ex: A2FE) Example: 2001:DB8:124C:C1A2:BA03:6735:EF1C:683D Abbreviated form of address uses "zero compression" 2001:DB8:0023:0000:0000:36E:1250:2B00
U ⊒	→2001:DB8:23:0:0:36E:1250:2B00
APNIC	→2001:DB8:23::36E:1250:2B00 Consecutive fields of all zeros can be compressed using ::
R	Can be used only once Leading zeros can be omitted

Centre	IPv6 address prefix
	 When you do IPv6 subnetting, you need to think in binary values not in hexadecimal value
Network Information	• 2001:1::/32 =2001:0001::/32
vork	Hex 2001 = Binary 0010 0000 0000 0001
Pacific Netv	Hex 0001 = Binary 0000 0000 0000 0001 • 2001:2:3::/48 =2001:0002:0003::/48
sia Pac	Hex 2001 = Binary 0010 0000 0000 0001 Hex 0002 = Binary 0000 0000 0000 0010
<	Hex 0003 = Binary 0000 0000 0000 0011
	 /64s in 2001:2:3::/48 are 2001:0002:0003:0001::/64
U	- 2001:0002:0003:0002::/64
APNIC	- 2001:0002:0003:0003::/64 - Etc.
AP	 – Ltc. – 16 bits of address space
R	 You can have 65536 /64s in one /48 IPv6 address Note:: indicates the remaining 64 bits are all zeros and can then be used to identify hosts::

Centre	IPv6 address prefix
Pacific Network Information (Another example: 2001:1:://32 =2001:0001::/32 Hex 2001 = Binary 0010 0000 0000 0001 Hex 0001 = Binary 0000 0000 0000 0001 How about /47s in 2001:1::/32? Hex 2001 = Binary 0010 0000 00000 0001 = 32 Hex 0001 = Binary 0000 0000 0000 0001 = 32 Hex 0000 = Binary 0000 0000 0000 = 47 (32 bits in prefix -"fixed", 15 bits in subnet) So the 15 subnet bits (red) are used to loarlify the /47s. Subnets numbered using these bits
Asia	Binary 0000 0000 0000 0000 = Hex 0000 The first /47 is 2001:0001:000:/47 Binary 0000 0000 0000 010 = Hex 0002 So the second /47 is 2001:0001:0002:/47
APNIC	Binary 0000 0000 0000 0100 = Hex 0004 So the third /47 is 2001:0001:0004::/47
AP	Binary 0000 0000 0000 0110 = Hex 0006 So the fourth /47 is 2001:0001:0006::/47
R	Binary 0000 0000 0000 1000 = Hex 0008 So the fifth /47 is 2001:0001:0008 ::/47

Exercise 3: IPv6 addressing

Centre

 3. Identify the first six /37 address blocks out of 2001:AA::/32

 1.

 2.

 3.

 4.

 5.

 6.

Zone IDs for local-use addresses

- · Local-use addresses can be reused
 - Link-local addresses are reused on each link (segment) - Because of this characteristic, the link-local address is
 - ambiguous To specify the link on which an address is assigned, an additional identifier is needed
 - · Zone Identifier also known as an interface id
- · The syntax of the zone id
 - Defined by RFC 4007

Asia

APNIC

R

- Address%zone_ID
 - Address = a local use address (a link-local address)
 zone-ID = defined relative to the sending hosts

 - Different hosts can use different zone ID values for the same physical zone or segment.
 - E.g., Host A might choose 3 to represent the zone ID of an attached link and Host B might choose 4 to represent the same link
 This has causes no issues since the zone id is local to the host

Special addresses
The unspecified address
– A value of 0:0:0:0:0:0:0 (::)
– It is comparable to 0.0.0.0 in IPv4
 Indicates the absence of a valid address
 Can be used as a source address by a host during the boot process when it sends out a request for address configuration information
 Should not be statically or dynamically assigned
 Should not appear as a destination IP address or within an IPv6 routing header
IPv6 Essentials by Silvia Hagen, p44

Special addresses

The loopback address

Asia

📀 APNIC

entre

🖉 APNIC

Asia

- It is represented as 0:0:0:0:0:0:0:1 (::1)

- Similar to 127.0.0.1 in IPv4
- Helpful in troubleshooting and testing the IP stack

 Can be used to send a packet to the protocol stack without sending it out on the subnet (sending a packet to self)

IPv6 Essentials by Silvia Hagen, p44

 Should never be statically or dynamically assigned

Anycast address

- One-to-one-of-many communication
 Delivery to a single interface
- Syntactically the same as a unicast address
- May be assigned to routers only
- · Cannot be used as the source address
- Needs more widespread experience in the future
 Image: Second second

111111111 8 bits	Flag Scope 4 bits 4bits	Group ID 112 bits
- Fla - Sco - - - - - - - - - - - - - - - - -	11111111 (FF) Igs 0000 = a permar 0001 = a non-pe ope (indicates tt 1 = node local 2 = link local 3 = site local 8 = organisation l E = global oup ID Identifies the mu II-known multic:	ulticast group within the specified scope

Centre	Plug and Play
ation 0	IPv6 link local address
Network Information	 Even if no servers/routers exist to assign an IP address to a device, the device can still auto- generate an IP address
Pacific	Allows interfaces on the same link to communicate with each other
Asia	Stateless
υ	 No control over information belongs to the interface with an assigned IP address
Ī	Possible security issues
APNIC	Stateful
R	 Remember information about interfaces that are assigned IP addresses

IPv6 features – autoconfiguration entre Keeps end user costs down – No need for manual configuration - In conjunction with the possibility of a low cost network interface · Helpful when residential networks emerge Asia as an important market · But the address is not automatically 📀 APNIC registered into the DNS

· Security issues need to be considered as discussed

Workshop Exercises

Asia

📀 APNIC

• Exercise 1: IPv6 Host Configuration

Exercise 1: IPv6 Host Configuration

- Windows XP SP2
- netsh interface ipv6 install
- Windows XP

Asia Pacific

📎 APNIC

Asia

📀 APNIC

ipv6 install

Exercise 1: IPv6 Host Configuration Verify your Configuration c:\>ipconfig

Exercise 1: IPv6 Host Configuration Testing your configuration ping fe80::260:97ff:fe02:6ea5%4

Note: the Zone id is YOUR interface index

Exercise 2: IPv6 Subnetting

Global prefix received: 2001:0df0:000a::/48

Scenario:

entre

Asia F

📀 APNIC

This ISP has 6 downstream smaller ISP customers and needs to sub-allocate smaller blocks to these companies. After consideration they decide to allocate /52 blocks.

ntre	Exercise 2: IPv6 Subnetting	
Ce.	All available subnets are:	
ation	2001:0DF0:000A:0000::/52	
E	2001:0DF0:000A:1000::/52	
Infoi	2001:0DF0:000A:2000::/52	
vork	2001:0DF0:000A:3000::/52	
Netw	2001:0DF0:000A:4000::/52	
cific	2001:0DF0:000A:5000::/52	
Paci	2001:0DF0:000A:6000::/52	
٨sia	2001:0DF0:000A:7000::/52	
4	2001:0DF0:000A:8000::/52	
	2001:0DF0:000A:9000::/52	
υ	2001:0DF0:000A:A000::/52	
PNI	2001:0DF0:000A:B000::/52	
4	2001:0DF0:000A:C000::/52	
∢	2001:0DF0:000A:D000::/52	
Q	2001:0DF0:000A:E000::/52	
10	2001:0DF0:000A:F000::/52	

Exercise 2: IPv6 Subnetting

- Take your /52 sub-allocation
- Create /64 subnet

Centre

Informa

Network

Asia Pacific

📀 APNIC

• List first 2 /64 subnet

Centre	Exercise 2:	IPv6 Subnetting
Information	 ISP1 first 2 /64 	
Ē	2001:0DF0:000A:1000::/64	
-fe	2001:0DF0:000A:1001::/64	
	 ISP2 first 2 /64 	
Network	2001:0DF0:000A:2000::/64	
	2001:0DF0:000A:2001::/64	
acific	 ISP3 first 2 /64 	
۰.	2001:0DF0:000A:3000::/64	
Asia	2001:0DF0:000A:3001::/64	
	 ISP4 first 2 /64 	
	2001:0DF0:000A:4000::/64	
\sim	2001:0DF0:000A:4001::/64 • ISP 5 first 2 /64	
APNIC	 ISP 5 first 2 /64 2001:0DE0:000A:5000::/64 	
Z	2001:0DF0:000A:5000::/64 2001:0DF0:000A:5001::/64	
Ā	 ISP 6 first 2 /64 	
Ø	2001:0DF0:000A:6000::/64	
0	2001:0DF0:000A:6001::/64	
0	2001021 0.0004.0001.004	

Exercise 3: IOS recap IOS version support basic IPv6 12.2(2)T IOS version support OSPF3 (IPv6) 12.2(15)T IOS version support BGP(IPv6) 12.2(2)T IOS version support BGP(IPv6) 12.2(2)T IOS version support BGP(4 byte AS Path) 12.4(24)T

Exercise 3:	IOS recap
-------------	-----------

· Required BGP commands to enable IPv6 routing Router(config)# router bgp 1 Router(config-router)# neighbor 2001:0df0:00aa::1 remote-as 2 (EBGP) Router2(config-router)#bgp router-id 10.0.0.1 (if no 32 bit add

Router(config-router)#address-family ipv6

Router(config-router-af)# no synchronization

Router(config-router-af)#neighbor 2001:0df0:00aa::1 activate Asia Router(config-router-af)# network 2001:0df0:00aa::/48

Verify BGP IPv6 configuration

N

Asia

📀 APNIC

Asia

📀 APNIC

- $_{\odot}$ APNI Router#sh bgp ipv6 unicast summary (summarized neighbor list)
 - Router#sh bgp ipv6 unicast (BGP database)
 - Router#sh ipv6 route bgp (BGP routing table)

Exercise 3: IOS recap

Required command to add IX prefix filter

- · Create prefix filter in global mode
- Router(config)#ipv6 prefix-list AS1 seq 2 permit 2001:0df0:aa:: /48

 Apply prefix filter in BGP router configuration mode Router(config-router)#neighbor 2001:0df0:aa::1 prefix-list AS1 in Router(config-router)#neighbor 2001:0df0:aa::1 prefix-list AS1 out

Exercise 3: IOS recap

Controlling routing update traffic (Not data traffic)

- 1. Incoming routing update (Will control outgoing data traffic)
- 2. Outgoing routing update (Will control incoming data traffic)

66

Centre	IPv6 forward and reverse mappings
Network Information	 Existing A record will not accommodate IPv6's 128 bit addresses
Asia Pacific Netwo	 BIND expects an A record's record- specific data to be a 32-bit address (in dotted-octet format)
<u> </u>	 An address record – AAAA (RFC 1886)
📎 APNIC	 A reverse-mapping domain ip6.arpa

IPv6 forward lookups

antre

Asia Pacific

📀 APNIC

- Multiple addresses possible for any given name
 - Ex: in a multi-homed situation
- Can assign A records and AAAA records to a given name/domain
- Can also assign separate domains for IPv6 and IPv4

Centre	IPv6 reverse lookups
k Information	 IETF decided to restandardize IPv6 PTR RRs
a Pacific Network	 They will be found in the IP6.ARPA namespace
C Asia	 The ip6.int domains has been deprecated
📎 APNIC	– Now using ip6.arpa for reverse

68

Centre	IPv6 reverse lookups - PTR records
Network Information (Similar to the in-addr.arpa
Pacific Network I	b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.ip6.arpa. IN PTR test.ip6.example.com.
Asia	• Example: reverse name lookup for a host with address 3ffe:8050:201:1860:42::1
📀 APNIC	\$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.arpa. 1.0.0.0.0.0.0.0.0.0.0.2.4.0.0 14400 IN PTR host.example.com.
10	

c Information Centre	Questions?	
Asia Pacific Network		
🗞 APNIC		

Overview

- Internet Fundamental
 - Internet Protocols some revision - IP addressing basic

 - IP Routing basic
 Introduction to DNS & RevDNS
 - IPv6 overview

Asia

📀 APNIC

entre

🖉 APNIC

Asia

🖉 APNIC

- IPv6 RevDNS
- -IPv6 transition technologies
- IX Policies
 Exercise on IX and IPv6 tunnelling

Acknowledgement

- "An IPv6 deployment guide" published by The 6NET Consortium" (September 2005) is also referred to in this module.
- · The material is available at:
 - http://www.6net.org/book/deploymentguide.pdf
- APNIC very much appreciates 6NET's efforts to share their knowledge with the broader Internet community.

Integration and transition

- Smaller and larger sites have different requirements for smooth IPv6 transition or adoption of IPv6
- However, if planned effectively, the deployment can be done in a phased and controlled manner
- · Need to know
- Your networks' peculiarities and specifics
 - Available solutions
 - How to configure them
- How to deploy services and accessibility required for contininuity of customer service
- How to maintain and manage your business and operational needs in new environment

Centre	Transition overview
Information 1	 How to get connectivity from an IPv6 host to the global IPv6 Internet?
Network	- Via an native connectivity
Pacific 1	– Via IPv6-in-IPv4 tunnelling techniques
sia Pa	 IPv6-only deployments are rare
4	 Practical reality
📀 APNIC	 Sites deploying IPv6 will not transit to IPv6- only, but transit to a state where they support both IPv4 and IPv6 (dual-stack)
Ø	http://www.finet.org/book/deployment-guide.pdf

Transition overview

entre

Asia

📀 APNIC

Asia

🗞 APNIC

- Three basic ways of transition – Dual stack
 - Deploying IPv6 and then implementing IPv6in-IPv4 tunnelling
 - IPv6 only networking

· Different demands of hosts and networks to be connected to IPv6 networks will determine the best way of transition

Transition overview

- · Dual stack
 - Allow IPv4 and IPv6 to coexist in the same devices and networks
- Tunnelling
 - Allow the transport of IPv6 traffic over the existing IPv4 infrastructure
- Translation
- Allow IPv6 only nodes to communicate with IPv4 only nodes

ials by Silvia Hagen, p255

IPv6 er

Dual stack

entre

Asia

🖉 APNIC

- A host or a router runs both IPv4 and IPv6 in the protocol TCP/IP stack.
- Each dual stack node is configured with both IPv4 and IPv6 addresses
- Therefore it can both send and receive datagrams belonging to both protocols
- The simplest and the most desirable way for IPv4 and IPv6 to coexist

	Dual stack and DNS
Information	 DNS is used with both protocol versions to resolve names and IP addresses
	 An dual stack node needs a DNS resolver that is capable of resolving both types of DNS address records
	 DSN A record to resolve IPv4 addresses DNS AAAA record to resolve IPv6 addresses
U	 Dual stack network
	 Is an infrastructure in which both IPv4 and Ipv6 forwarding is enabled on routers
	IPv6 essentials by Silvia Hagen, p256

Tunnels

Centre

🖉 APNIC

- Part of a network is IPv6 enabled
- Tunnelling techniques are used on top of sn existing IPv4 infrastructure and uses IPv4 to route the IPv6 packets between IPv6 networks by transporting these encapsulated in IPv4
 - Tunnelling is used by networks not yet capable of offering native IPv6 functionality
 - It is the main mechanism currently being deployed to create global IPv6 connectivity
- Manual, automatic, semi-automatic configured tunnels are available

Enc	apsulated IPv6 packets in IPv4
the pit year of an or	el por a Micelank source Anice Samor Inte
Epril .	* Davamer., der solv
hk 2H 34.01804H 20 34.038070 30 34.028070 31 36.028570 32 36.022530 33 36.023310	
35 36 336377 38 32 34 37 39 37 37 37 39 37 37 37 30 36 034485 30 40 38 03132 36 42 38 34636 36 43 36 34636 36 43 36 34636 36 44 36 04000 36 47 26 038027 36 47 20 038027 47 40 20 238235 36	
Type: IP (Doom Internet Protocol weiden: 4 Header Herdbin 0 01ffrenetiated Dood 00 	
Tragent office The 50 Their Protocoli 3Pee General Contents Content 100.10 Content 100.10	110 110 110 110 110 110 110 110
Starce alteress Destination ad	

	Tunnel encapsulation
🗞 APNIC Asia Pacific Network Information Centre	 The steps for the encapsulation of the IPv6 packet The entry point of the tunnel decrements the IPv6 hop limit by one Encapsulates the packet in an IPv4 header Transmits the encapsulated packet through the tunnel The exit point of tunnel receives the encapsulated packet If necessary, the IPv4 packet is fragmented It checks whether the source of the packet (tunnel entry point) is an acceptable source (according to its configuration) If the packet is fragmented, the exit point reassembles it The exit point removes the IPv4 header Then it forwards the IPv6 packet to its original destination
100	IPv6 essentials by Silvia Hagen, p258

		C O M
Tunnel I	огоі	ker

- Semi-automatic alternative to manual configuration
- Useful when:

Asia Pacific

🔕 APNIC

- A dual stack host in an IPv4-only network wishes to gain IPv6 connectivity
- The basic concept of a tunnel broker:
- A user connects to a web server(the TB)
- Enters some authentication details
- Receives back a short script to run
- The script then establishes an IPv6-in-IPv4
- tunnel to the tunnel broker DS router

6to4 When 6to4 domains communicate with 6to4 domains, things are relatively simpler The IPv4 address of the destination 6to4 router is used in the default IPv6 route of the source router.

ntre

Asia B

📀 APNIC

If you are an ISP wishing... To offer some support for IPv6 clients but you are not ready to do the full dual stack deployment across your entire network: If you all want to do initially is: Move IPv6 packets Support the IPv6 connectivity services What is in the initial shopping list? At a minimum one of: A dual stack gateway An IPv6 router IPv6 peers or IPv6 transit services

http://www.potaroo.net/ispcol/2008-02/tui.html

n Centre	Questions?	
Network Information		1
Asia Pacific h		
APNIC		
R		

Transit VS Peering

Two type of traffic exchange between ISPs

- Transit
 - Where ISP will pay to send/receive traffic
 - Downstream ISP will pay upstream ISP for transit service

Peering

📀 APNIC

Asia

🖉 APNIC

- ISPs will not pay each other to interchange traffic
- Works well if win win for both
- Reduce cost on expensive transit link

IX Peering Model • BLPA (Bi-Lateral Peering Agreement) – IX will only provide layer two connection/switch port to ISPs

- Every ISPs will arrange necessary peering arrangement with others by their mutual business understanding.
- MLPA (Multi-Lateral Peering Agreement)
- IX will provide layer two connection/switch port to ISPs
- Each ISP will peer with a **route server** on the IX.
- Route server will collect and distribute directly
- connected routes to every peers.

Centre	IXP Peering Policy
Pacific Network Information (BLPA is applicable where different categories of ISPs are connected in an IX
ic Network	 Large ISPs can choose to peer with large ISPs (base on their traffic volume)
Asia Pacif	 Small ISPs will arrange peering with small ISPs
	 Would be preferable for large ISPs
📎 APNIC	 They will peer with selected large ISPs (Equal traffic interchange)
4	 Will not loose business by peering with small ISP

IX Peering Policy

entre

📀 APNIC

Asia Pacific

🖉 APNIC

- MLPA model works well to widen the IX scope of operation (i.e national IX).
- Easy to manage peering
 - Peer with the route server and get all available local routes.
 - Do not need to arrange peering with every ISPs connected to the IX.
- Unequal traffic condition can create not intersected situation to peer with route server

IX peering Policy

- Both peering model can be available in an IX.
- Member will select peering model i.e either BLPA or MLPA (Route Server Peering)
- IX will provide switch port
- Mandatory MLPA model some time not preferred by large ISP (Business Interest)
 - Can create not interested situation to connect to an IX

IX Operating Cost

- Access link
- Link maintenance
- Utility

antre

Asia Pacific

🗞 APNIC

Administration

Cost Model Not for profit Cost sharing Membership based Commercial IX

on Centre	Questions?	
c Network Information		-
Asia Pacific		
📎 APNIC		

Steps to be done

- Determine the IP addressing scheme for the IX and for your ISP LAN network
- Configure the external interfaces of the Routers connecting your ISP to the IX
- Configure an internal LAN for your ISP
- Configure BGP on the Router
- Test this connectivity

Asia Pacific

📀 APNIC

IPv6 addressing plan

IX Subnet: 2001:AA::/48

Routers interface IPv6 Address (IX side)

Router 1: 2001:00AA::1/64 Router 2: 2001:00AA::2/64 Router 3: 2001:00AA::3/64 Router 4: 2001:00AA::4/64 Router 5: 2001:00AA::5/64

Asia

📀 APNIC

entre

Asia

📀 APNIC

Router 6: 2001:00AA::6/64 Router 7: 2001:00AA::7/64 Router 8: 2001:00AA::8/64 Router 9: 2001:00AA::9/64 Router 10: 2001:00AA::10/64

IPv6 addressing plan

ISP's Global routing prefix

 Router 1:
 2001:abc1::/32
 R

 Router 2:
 2001:abc2::/32
 R

 Router 3:
 2001:abc3::/32
 R

 Router 4:
 2001:abc4::/32
 R

 Router 5:
 2001:abc5::/32
 R

Router 6: 2001:abc6::/32 Router 7: 2001:abc7::/32 Router 8: 2001:abc8::/32 Router 9: 2001:abc9::/32 Router 10: 2001:abca::/32

Configure Router Interface Connected to IX (0/0) Configure Router Interface Connected to LAN (0/1) Try ping others Create EBGP Peering Announce LAN/ISP prefix

Step of IOS command line

entre

Asia

📀 APNIC

Asia Pacific

📀 APNIC

•

Exit from the interface configuration and enable IPv6 unicast datagram forwarding by typing the command below in the global mode.

Router(config) # ipv6 unicast-routing • Router(config) # ipv6 cef

Configure BGP with the IPv6 address

Type "Router bgp" with the AS number in the command prompt of the Router global mode to configure the BGP protocol.

- Router#configure terminal
- Router(config)#router bgp <ASN>
- Router(config-router)#no auto summary
- Router (config-router) #no synchronization
- Router (config-router-af)#no synchronization (IPv6 address-family mode)

Where the AS number is the number of your Router

Configure BGP with the IPv6 address Router(config-router)faddress-family ipv6 Router(config-router-af)fneighbor 2001:00AA::2 activate Router(config-router-af)fnetwork 2001:00AA::/64

Configure BGP with the IPv6 addres

Configure BGP router-id (optional). BGP protocol might ask for "router id" if there's no IPv4 address configured aside from IPv6 address. Each eBGP speaker needs to have a 32 bit integer router ID.

The highest IP address configured on the router will become the router ID.

If a loopback interface address is configured, it will be use as the router ID.

Asia Pacific

📀 APNIC

If no IPv4 address is configured, watch out for such error message below. • % BGP cannot run because the Router-id is not configured • BGP Router identifier 0.0.0.0, local AS number 1

Centre	Verifying the BGP process show bgp ipv6 unicast summary (to check the bgp summary table)				
Information	Expected output: – Router6#sh bgp ipv6 unicast summary				
Asia Pacific Network Information	 BGP router identifier 192.169.8.1, local AS number 6 BGP table version is 4, main routing table version 4 3 network entries using 447 bytes of memory 3 path entries using 228 bytes of memory 				
🖉 APNIC	 – 0 BGP filter-list cache entries using 0 bytes of memory – BGP using 1787 total bytes of memory 				

V	erifying the BGP process sh ipv6 route (to check the IPv6 routing table)
	Expected Output:
NIC Asia Pacific Netwo	Routerouter#sh ipv6 route IPv6 Routing Table - 9 entries Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP U - Per-uers Static route II - ISIS L1, 2 - ISIS L2, H - ISIS interrace, IS - ISIS summary O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2 ON1 - OSPF NSSA ext 1, ON2 - OSPF ntsXA ext 2 S :::/01/00] via ::, Bhemet000 L 2001:AA:::/21/28 (J00] via ::, Ethernet00 C 2001:AG:::/64 (J00] via ::, Ethernet00 L 2001:A2::/21/28 (J00] via ::, Ethernet00 N = 0; E

ation Centre	Verifying the BGP process shipv6 route (to check the IPv6 routing table)
C Asia Pacific Network Information	Expected Output continue • S 2001:ABC2::/32 [1/0] • via ::, Null0 • B 2001:ABC3::/32 [20/0] • via FE80::2E0:1EFF:FE63:2901, Ethernet0/0 • L FE80::/10 [0/0] • via ::, Null0 • L FF00::/8 [0/0] • via ::, Null0
📀 APNIC	

Apply IX peering policy Centre • BLPA - Get an IX switch port - Arrange separate peering with other participating member Routing updates can be controlled based on individual peer - Configuration example: Router(config)#ipv6 prefix-list AS2-IN seq 2 permit 2001:0df0:abc2::/32

Router(config)#pv6 prefix-list AS3-IN seq 2 permit 2001:0df0:abc3::/32 Router(config)#pv6 prefix-list MYAS-PREFIX seq 2 permit 2001:0df0:abc1::/32

Router(config-router)# neighbor 2001:0df0:00aa::2 remote-as 2 (EBGP) Router(config-router)# neighbor 2001:0df0:00aa::3 remote-as 3 (EBGP)

Asia

υ

APNI

R

N

Router(config-router)#neighbor 2001:0df0:aa::2 prefix-list AS2-IN in Router(config-router)#neighbor 2001:0df0:aa::2 prefix-list MYAS-PREFIX out

Router(config-router)#neighbor 2001:0df0:aa::3 prefix-list AS3-IN in Router(config-router)#neighbor 2001:0df0:aa::3 prefix-list MYAS-PREFIX out

Apply IX peering policy MLPA - Get an IX switch port - Arrange a single peering with route server - Routing updates can be controlled on individual prefix acific - Configuration example: Asia Router(config)#ipv6 prefix-list RS-IN seq 2 permit 2001:0df0:abc2::/32 Router(config)#ipv6 prefix-list RS-IN seq 3 permit 2001:0df0:abc2::/32 Router(config)#ipv6 prefix-list RS-OUT seq 2 permit 2001:0df0:abc1::/32 APNIC

Router(config-router)# neighbor 2001:0df0:00aa::e remote-as 100 (EBGP)

Router(config-router)#neighbor 2001:0df0:aa::e prefix-list RS-IN in Router(config-router)#neighbor 2001:0df0:aa::2 prefix-list RS-OUT out

Exercise 5: IPv6 ISP Tunneling Topology

Steps to be done

- Determine the IP addressing scheme for your ISP LAN network
- Determine the IP addressing scheme for the tunnel interface
- Configure the interfaces of the Routers with IPv6 address Asia
 - Configure EBGP on Dual Stack (DS) router
- Configure Tunnel in DS router with IPV6 address 📎 APNIC
 - Configure EBGP Peering with IPv6 router
 - Configure iBGP peering with ISP router
 - Test this connectivity

Centre	Exercise 5: IPv6 ISP Tunneling Topology
Information	 Global prefix received: 2001:0df0:000a:: /48
Network	2001:0DF0:000A:0000::/52 (AS45192)
Pacific N	2001:0DF0:000A:1000::/52 (AS65521)
Asia Pi	2001:0DF0:000A:2000::/52 (AS65522)
	2001:0DF0:000A:3000::/52 (AS65523)
U T	2001:0DF0:000A:4000::/52 (AS65524)
APNIC	2001:0DF0:000A:5000::/52 (AS65525)
R	2001:0DF0:000A:6000::/52 (AS65526)

Exercise 5: IPv6 ISP Tunneling Topology AS45192 IP distribution 192.168.0.0/30 [IPv6Router(1) -IPv4Router(2)] 2001:0DF0:000A:0000::/52 (AS45192) 2001:0DF0:000A:0000::/64 (IPv6Router-R1 Tunnel0) 2001:0DF0:000A:0001::/64 (IPv6Router-R3 Tunnel0) 2001:0DF0:000A:0002::/64 (IPv6Router-R5 Tunnel0) 2001:0DF0:000A:0003::/64 (IPv6Router-R7 Tunnel0) 2001:0DF0:000A:0004::/64 (IPv6Router-R9 Tunnel0) 2001:0DF0:000A:0005::/64 (IPv6Router-R11 Tunnel0)

Centre	Exercise 5: IPv6 ISP	Tunneling Topology
	Allocated IPv6 address for different	AS
Pacific Network Information	192.168.0.4/30 [R1(6) -IPv4Router(5)] 2001:0DF0:000A:1000::/52 (AS65521) 2001:0DF0:000A:1000::/64 (R1-R2) 2001:0DF0:000A:1001:/64 (R1 LAN) 2001:0DF0:000A:0000::2/64 (R1 Tunnel 0)	AS65521
Asia Pa	192.168.0.8/30 [R3(10) -IPv4Router(9)] 2001:0DF0:000A:2000::/52 (AS65522) 2001:0DF0:000A:2000::/64 (R3-R4) 2001:0DF0:000A:2001::/64 (R4 LAN)	AS65522
📎 APNIC	2001:0DF0:000A:001:254 (R3 Tunnel 0) 192.168.0.12/30 [R5(14)-IPv4Router(13)] 2001:0DF0:000A:3000:/52 (A565523) 2001:0DF0:000A:3000:/64 (R5-R6) 2001:0DF0:000A:3001:/64 (R5 LAN) 2001:0DF0:000A:0002:2764 (R5 Tunnel 0)	A\$65523

Exercise 5: IPv6 IS	P Tunneling Topology
Allocated IPv6 address for differ	ent AS
192.168.0.16/30 [R7(18) -IPv4Router(17)] 2001:0DF0:000A:4000::/52 (AS65524)	AS65524
2001:0DF0:000A:4000::/64 (R7-R8)	
2001:0DF0:000A:4001::/64 (R8 LAN)	
2001:0DF0:000A:0003::2/64 (R7 Tunnel 0))
192.168.0.20/30 [R9(22) - IPv4Router(21)]	
2001:0DF0:000A:5000::/52 (AS65525)	AS65525
2001:0DF0:000A:5000::/64 (R9-R10)	
2001:0DF0:000A:5001::/64 (R10 LAN)	
2001:0DF0:000A:0004::2/64 (R9 Tunnel 0))
192.168.0.24/30 [R11(26) - IPv4Router(25	1
2001:0DF0:000A:6000::/52 (AS65526)	AS65526
2001:0DF0:000A:6000::/64 (R11-R12)	
2001:0DF0:000A:6001::/64 (R12 LAN)	
2001:0DF0:000A:0005::2/64 (R11 Tunnel	0)

Exercise 5: IPv6 ISP Tunneling Topology

Configuration steps in every AS

entre

Asia

📀 APNIC

Asia

📎 APNIC

- DSRouter(Config)#jpv6 unicast-routing
 DSRouter(Config)#jpv6 cef
 DSRouter(Config)#EBGP with IPv4Router
 DSRouter(Config)#EBGP with IPv6 Router
 DSRouter(Config)#BBGP with IPv6 router
 DSRouter(Config)#BBGP with IPv6 router
 DSRouter(Config)#J#BGP peering with IPv6 only router
 DSRouter(Config)#J#BGP peering with IPv6 only router
- IPv6OnlyRouter(Config)#ipv6 unicast-routing

- . . . IPv60nlyRouter(Config)#ipv6 unicasi-routing IPv60nlyRouter(Config)#ipv6 cef IPv60nlyRouter(Config)#IPv6 address with DSRouter IPv60nlyRouter(Config)#IPv6 address with LAN IPv60nlyRouter(Config)#IBGP Peering with DS router
- .

Exercise 5: IPv6 ISP Tunneling Topology Verification steps in every AS DSRouter#sh bgp ipv6 (unicast) summary

- DSRouter#sh bgp ipv6 (unicast)
- DSRouter#sh ipv6 route (bgp)
- IPv6OnlyRouter#sh bgp ipv6 (unicast) summary
- IPv6OnlyRouterRouter#sh bgp ipv6 (unicast)
- IPv6OnlyRouterRouter#sh ipv6 route (bgp)

