VoIP Quality of Service - Basic Theory

PacNOG5 VoIP Workshop Papeete, French Polynesia. June 2009

Jonny Martin - jonny@jonnynet.net

Intro

- What is Quality of Service (Qos)?
 - QoS and the PBX
 - Traffic Types
- VoIP
 - Traffic characteristics
 - VoIP concerns
- Operation and implementation of QoS

- When people say QoS, they are normally referring to the end result
 - i.e. I want my VoIP calls to always be of a high quality
- QoS can be used for good or for bad though!
 - ISPs shaping bit-torrent is uses QoS tools to reduce the quality of that traffic
- QoS tools allow us to manage traffic flows in a network
 - Through queuing, shaping, and dropping traffic
- All about *instantaneous* traffic loads

Why do we need QoS

- Well, we don't always.
 - Only need QoS when there is not enough network resource to carry the traffic offered to it at any point in time

Legacy PABXs and QoS

- Even legacy TDM PABXs include QoS features
- TDM PABXs are circuit switch
 - A call has guaranteed bandwidth across a circuit end to end
 - No other traffic to worry about on the link
 - When there aren't enough circuits to carry the load, the call cannot take place
 - Call Admission Control (CAC)
 - Call Blocking

Legacy PABXs and QoS... ctd

- TDM PABXs generally utilise a separate signalling and media paths.
- No other traffic to ever worry about

VoIP Traffic

- Just a particular type of data traffic
- One that is very sensitive to underlying network performance
 - Users complain about bad quality calls
- Almost always operating on a 'converged' network which supports general IP traffic also

Data Traffic Characteristics

- Variable and inconsistent traffic patterns
 - Sometimes a little bit of bursty traffic, e.g. web browsing
 - Sometimes continuous high bit rate traffic bittorrent and the likes
- May be symmetric or asymmetric traffic loads
- General non-real time data
 - Delays in traffic delivery (within limits!) not really an issue
 - Most protocols have built in re-transmission functions

Voice Traffic Characteristics

- Very consistent traffic flows
 - High PPS
 - Small packets
 - Different codecs present more or less of the above
- Always Real-Time traffic
 - We're dealing with real, real-time traffic
 - No re-transmissions
 - Delay and delay variance (jitter) affect the 'quality' of the call

Voice Traffic Characteristics... ctd

- Generally runs on an existing 'data' network
 - Need some form of QoS to ensure traffic gets the priority you consider it needs
- VoIP voice runs over your IP network
 - If your IP network is broken, then you can't expect your VoIP devices to magically fix this!

Network concerns

- Queuing delays
- Congestion
- Serialisation delays
- Packet drops and performance on third party links (ISP, Carrier links, etc.)
 - over subscription of bandwidth
 - high latency and or jitter

VoIP Concerns

- Latency
 - High latency is bad for voice call 'quality' we can live with it though
- Jitter
 - Jitter is really bad for voice call 'quality' jitter buffers attempt to fix it
- Packet drops
 - Packet drops are really, really bad for voice call 'quality' really hard to recreate a packet that we don't receive!

Latency Sources

- Codec delay
- Processing delay
- Serialisation delay
- Queuing delay
- Propogation delay
- Jitter buffer delay

How much latency is too much?

- Generally 150ms one way is fine
- Any longer and conversations start to feel half-duplex
 - 'Hi Dan, it's Jonny here... over.'
 -
 - 'Oh hai Jonny!... over'
 - •
 - 'Wow, only one of us can talk at a time!'
- Just like satellite based calls

Jitter

- Jitter is variance in inter-packet arrival times
 - variable delay
- Latency itself doesn't garble voice traffic. Jitter does
- Normally caused by serialisation delays
 - small packet gets caught waiting for a large packet to transmit
- Or multiple traffic forwarding paths for the same flows resulting in packets taking different paths
 - per packet load balancing a bad idea

Dropped Packets

- If there is not enough bandwidth on a link for the presented load, traffic will be dropped
 - may be due to interface congestion
 - may be due to policers enforcing service parameters
- Bad physical layer can cause lost / corrupt packets

Prioritisation

- QoS based on providing priority to some traffic (VoIP, in our case) over others during times and at points of congestion
- Tell out network to prefer VoIP packets and treat them a little better than general data packets

QoS Components

Classify and Mark

- Inspect traffic and assign it to a 'class'
 - L2/L3/L4 and higher information can be used
 - IP Addresses, protocol, port...
- Different platforms and different vendors provide different capabilities for this
- Markings
 - Class of Service (CoS) Layer 2
 - Differentiated Services Code Point (DSCP) Layer 3
 - EXP (experimental) bits MPLS

Marking traffic

- Can be done as a result of classification on routers
- Set by hosts
- Set by VoIP devices themselves
- Need to decide on trust boundaries, and whether or not to trust incoming marks at any point in a network

Traffic Policing / Shaping

- Traffic shaping queues/buffers traffic and send it on at a uniform rate
 - a 'soft' approach
 - Provides higher link utilisation, at the expense of additional variable latency
- Traffic policing simply drops packets once the offered rates exceeds a threshold
 - a 'hard' approach
 - No additional latency or jitter, at the expense of lower link utilisation

Available tools

- Committed Access Rate (CAR)
 - provide rate limits on interfaces
- Low Latency Queuing (LLQ)
 - Always send voice packets first before other traffic
- Class Based Fair Weighted Queuing
 - Enhancement of LLQ that avoids starving other traffic types of bandwidth and a 'fairer' queuing mechanism
 - Provide a minimum bandwidth allocation for VoIP, can be used by other classes when not being used

Queuing / Scheduling

- Historical queueing methods
 - First In First Out (FIFO)
 - Just like in McDonalds
 - Priority Queuing (PQ)
 - E.g. airline checking. First/Business have separate queue
 - Custom Queuing (CQ)
 - Weighted Fair Queuing (WFQ)
 - Airline example, but First/Business counters occasionally take Economy

Modern Queuing

- Class Based Fair Weighted Queuing (CBWFQ)
- Weighted Round Robin (WRR)
 - Weights determine frequency of queue servince (WFQ, CBWFQ) or ratio of queue serving (WRR)

Packet Scheduling

- Priority Queuing for WFQ (PQ-WFQ)
 - older way of doing things
- Priority Queuing for CBWFQ (LLQ)
 - newer way of doing things

Packet Dropper Techniques

- Tail Drop
- Weighted Random Early Detection (WRED)
 - can be distributed (dWRED)
 - or flow based (FBWRED)

WRED

WRED... ctd

Where to implement QoS?

- Where ever there is a congestion point
 - WAN edge
 - Slow links
 - Aggregation points

Where to Apply QoS

Cisco QoS support

- We'll only look at the very basics here
- Modular QoS command line (MQC) on IOS
- Lots of knobs you can twiddle with...
 - WFQ, CBFWQ, LLQ, LFI, DSCP, CoS...