

OSPF for IPv6

ISP/IXP Workshops

Recap: OSPFv2

- April 1998 was the most recent revision (RFC 2328)
- OSPF uses a 2-level hierarchical model
- SPF calculation is performed independently for each area
- Typically faster convergence than DVRPs
- Relatively low, steady state bandwidth requirements

OSPFv3 overview

- OSPF for IPv6
- Based on OSPFv2, with enhancements
- Distributes IPv6 prefixes
- Runs directly over IPv6
- Ships-in-the-night with OSPFv2

OSPFv3 / OSPFv2 Similarities

- Basic packet types Hello, DBD, LSR, LSU, LSA
- Mechanisms for neighbor discovery and adjacency formation
- Interface types
 P2P, P2MP, Broadcast, NBMA, Virtual
- LSA flooding and aging
- Nearly identical LSA types

V2, V3 Differences

OSPFv3 runs on a Link instead of per IP Subnet

- A link by definition is a medium over which two nodes can communicate at link layer
- In IPv6 multiple IP subnet can be assigned to a link and two nodes in different subnet can communicate at link layer therefore OSPFv3 is running per link instead of per IP subnet
- An Interface connect to a link and multiple interface can be connected to a link

Support of Multiple Instance per Link

- New field (instance) in OSPF packet header allow running multiple instance per link
- Instance ID should match before packet being accepted
- Useful for traffic separation, multiple areas per link and AF (see later)

Address Semantic Change in LSA

- Router and Network LSA carry only topology information
- Router LSA can be split across multiple LSAs; Link State ID in LSA header is a fragment ID
- Intra area prefix are carried in a new LSA payload called intra-area-prefix-LSAs
- Prefix are carried in payload of inter-area and external LSA

Generalization of Flooding Scope

- In OSPFv3 there are three flooding scope for LSAs (link-local scope, area scope, AS scope) and they are coded in LS type explicitly
- In OSPFv2 initially only area and AS wide flooding was defined; later opaque LSAs introduced link local scope as well

Explicit Handling of Unknown LSA

- The handling of unknown LSA is coded via U-bit in LS type
- When U bit is set, the LSA is flooded with the corresponding flooding scope, as if it was understood
- When U bit is clear, the LSA is flooded with link local scope
- In v2 unknown LSA were discarded

Authentication is Removed from OSPF

- Authentication in OSPFv3 has been removed and OSPFv3 relies now on IPv6 authentication header since OSPFv3 run over IPv6
- Autype and Authentication field in the OSPF packet header therefore have been suppressed

OSPF Packet format has been changed

- The mask field has been removed from Hello packet
- IPv6 prefix are only present in payload of Link State update packet

Two New LSAs Have Been Introduced

- Link-LSA has a link local flooding scope and has three purposes
- Intra-area-prefix-LSA to advertise router's IPv6 address within the area

Link LSA

- A link LSA per link
- Link local scope flooding on the link with which they are associated
- Provide router link local address
- List all IPv6 prefixes attached to the link
- Assert a collection of option bit for the Router-LSA

Inter-Area Prefix LSA

- Describes the destination outside the area but still in the AS
- Summary is created for one area, which is flooded out in all other areas
- Originated by an ABR
- Only intra-area routes are advertised into the backbone
- Link State ID simply serves to distinguish inter-areaprefix-LSAs originated by the same router
- Link-local addresses must never be advertised in interarea- prefix-LSAs

LSA Types

	LSA Function Code	LSA Type
Router-LSA	1	0x2001
Network-LSA	2	0x2002
Inter-Area-Prefix-LSA	3	0x2003
Inter-Area-Router-LSA	4	0x2004
AS-External-LSA	5	0x4005
Group-membership-LSA	6	0x2006
Type-7-LSA	7	0x2007
Link-LSA NEW	8	0x2008
Intra-Area-Prefix-LSA	9	0x2009

Configuring OSPFv3 in Cisco IOS

Similar to OSPFv2

Prefixing existing Interface and Exec mode commands with "ipv6"

- Interfaces configured directly Replaces network command (Also available in OSPFv2 from IOS 12.4)
- "Native" IPv6 router mode
 Not a sub-mode of router ospf

Configuration modes in OSPFv3

Entering router mode
[no] ipv6 router ospf <process ID>
Entering interface mode
[no] ipv6 ospf <process ID> area <area ID>
Exec mode
show ipv6 ospf [<process ID>]
clear ipv6 ospf [<process ID>]

Cisco IOS OSPFv3 Specific Attributes

Configuring area range

[no] area <area ID> range <prefix>/<prefix length></prefix</prefix length></prefix</prefix</prefix</prefix</prefix</prefix</prefix</prefix</prefix</prefix</prefix</prefix</prefix</prefix</prefix</prefix</prefix</prefix</pre>

Showing new LSA

show ipv6 ospf [<process ID>] database link

show ipv6 ospf [<process ID>] database prefix

Configuring authentication

Under ipv6 router ospf:

area 0 authentication ipsec spi 256 md5 <passwd> Under interface:

ipv6 ospf authentication ipsec spi 256 md5 <passwd>

OSPFv3 Debug Commands

Adjacency is not appearing

[no] debug ipv6 ospf adj
[no] debug ipv6 ospf hello

SPF is running constantly

[no] debug ipv6 ospf spf
[no] debug ipv6 ospf flooding
[no] debug ipv6 ospf events
[no] debug ipv6 ospf lsa-generation
[no] debug ipv6 ospf database-timer

General purpose

[no] debug ipv6 ospf packets

[no] debug ipv6 ospf retransmission

[no] debug ipv6 ospf tree

OSPFv3 Configuration Example

```
Router1#
interface POS1/1
 ipv6 address 2001:db8:FFFF:1::1/64
 ipv6 ospf 100 area 0
interface POS2/0
 ipv6 address 2001:db8:1:1::2/64
ipv6 ospf 100 area 1
 ipv6 router ospf 100
  log-adjacency-changes
!
Router2#
interface POS3/0
 ipv6 address 2001:db8:1:1::1/64
ipv6 ospf 100 area 1
ipv6 router ospf 100
 log-adjacency-changes
```


OSPFv3 Interface Status

```
Router2#sh ipv6 ospf int pos 3/0
POS3/0 is up, line protocol is up
Link Local Address FE80::290:86FF:FE5D:A000, Interface ID 7
Area 1, Process ID 100, Instance ID 0, Router ID 10.1.1.4
Network Type POINT_TO_POINT, Cost: 1
Transmit Delay is 1 sec, State POINT_TO_POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:02
Index 1/1/1, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 3, maximum is 3
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 10.1.1.3
Suppress hello for 0 neighbor(s)
```

OSPFv3 Neighbour Status

```
Router2#sh ipv6 ospf neighbor detail
Neighbor 10.1.1.3
In the area 1 via interface POS3/0
Neighbor: interface-id 8, link-local address FE80::2D0:FFFF:FE60:DFFF
Neighbor priority is 1, State is FULL, 12 state changes
Options is 0x630C34B9
Dead timer due in 00:00:33
Neighbor is up for 00:49:32
Index 1/1/1, retransmission queue length 0, number of retransmission 1
First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
Last retransmission scan length is 2, maximum is 2
Last retransmission scan time is 0 msec, maximum is 0 msec
```

OSPFv3 entries in Routing Table

```
Router2#sh ipv6 route
IPv6 Routing Table - 5 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
      U - Per-user Static route
      I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea
      O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
OI 2001:db8:FFFF:1::/64 [110/2]
    via FE80::2D0:FFFF:FE60:DFFF, POS3/0
C 2001:db8:1:1::/64 [0/0]
   via ::, POS3/0
   2001:db8:1:1::1/128 [0/0]
Т.
   via ::, POS3/0
  FE80::/10 [0/0]
L
    via ::, Null0
  FF00::/8 [0/0]
Τ.
    via ::, NullO
```

Cisco IOS OSPFv3 Database Display

Router2# show	ipv6 ospf dat	abase				
OSPF Router w	vith ID (3.3.3.	3) (Process	ID 1)			
	Router Link States (Area 0)					
Link ID	ADV Router	Age	Seq#	Checksum	Link count	
0	1.1.1.1	2009	0x800000A	0x2DB1	1	
0	3.3.3.3	501	0x80000007	0xF3E6	1	
	Net Link St	ates (Area O)			
Link ID	ADV Router	Age	Seq#	Checksum		
7	1.1.1.1	480	0x8000006	0x3BAD		
	Inter Area	Prefix Link	States (Area 0)			
ADV Router	Age	Seq#				
1.1.1.1	1761		2001:db8:2:2:;			
1.1.1.1	982	0x80000005	2001:db8:2:4::2	2/128		
	Link (Type-	8) Link Stat	es (Area O)			
Link ID	ADV Router	Age	Seq#	Checksum	Interface	
11	3.3.3.3	245	0x8000006	0xF3DC	LoO	
7	1.1.1.1	236	0x8000008			
7	3.3.3.3	501	0x8000008	0xE7BC	Fa2/0	
	Intra Area	Prefix Link	States (Area 0)			
Link ID	ADV Router	Age	Seq#	Checksum	Ref 1stype	
0	1.1.1.1	480	0x8000008	0xD670	0x2001	
107	1.1.1.1	236	0x8000008	0xC05F	0x2002	
0	3.3.3.3	245	0x80000006	0x3FF7	0x2001	

Cisco IOS OSPFv3 Detailed LSA Display

```
show ipv6 ospf 1 database inter-area prefix
 LS age: 1714
 LS Type: Inter Area Prefix Links
 Link State ID: 0
 Advertising Router: 1.1.1.1
 LS Seq Number: 80000006
 Checksum: 0x25A0
 Length: 36
 Metric: 1
 Prefix Address: 2001:db8:2:2::
 Prefix Length: 64, Options: None
show ipv6 ospf 1 database link
 LS age: 283
 Options: (IPv6 Router, Transit Router, E-Bit, No Type 7-to-5, DC)
 LS Type: Link-LSA (Interface: Loopback0)
 Link State ID: 11 (Interface ID)
 Advertising Router: 3.3.3.3
 LS Seq Number: 8000007
 Checksum: 0xF1DD
 Length: 60
 Router Priority: 1
 Link Local Address: FE80::205:5FFF:FEAC:1808
 Number of Prefixes: 2
 Prefix Address: 2001:db8:1:3::
 Prefix Length: 64, Options: None
 Prefix Address: 2001:db8:1:3::
 Prefix Length: 64, Options: None
```

OSPFv3 on IPv6 Tunnels over IPv4

Conclusion

- Based on existing OSPFv2 implementation
- Similar CLI and functionality
- Cisco IOS Software availability:

Release 12.2(15)T and 12.3 onwards

Release 12.2(18)S for Cisco 7000 Series Routers and Cisco Catalyst 6000 Series Switches

Release 12.0(24)S the Cisco 12000 Series Routers

OSPF for IPv6

ISP/IXP Workshops