
DNS Security

In Conjunction with

22-26 Nov 2011

Noumea, New Caledonia

Introduction

•  Presenters
− Champika Wijayatunga

•  Training Unit Manager
•  champika@apnic.net

DNS Security :
DNSSEC Deployment

Overview

•  Introduction
− DNSSEC support in BIND
− Why DNSSEC?

•  DNSSEC mechanisms
− To authenticate servers (TSIG)
− To establish authenticity and integrity of data

•  Quick overview
•  New RRs
•  Using public key cryptography to sign a single zone
•  Delegating signing authority ; building chains of trust
•  Key exchange and rollovers

•  Steps

Background

•  The original DNS protocol wasn’t designed with security in
mind

•  It has very few built-in security mechanism

•  As the Internet grew wilder & wollier, IETF realized this
would be a problem
− For example DNS spoofing was to easy

•  DNSSEC and TSIG were develop to help address this
problem

6

DNS Protocol Vulnerability

•  DNS data can be spoofed and corrupted between master
server and resolver or forwarder

•  The DNS protocol does not allow you to check the
validity of DNS data
− Exploited by bugs in resolver implementation (predictable

transaction ID)
− Polluted caching forwarders can cause harm for quite some time

(TTL)
− Corrupted DNS data might end up in caches and stay there for a

long time

•  How does a slave (secondary) knows it is talking to the
proper master (primary)?

Why DNSSEC?

•  DNS is not secure
− Applications depend on DNS

• Known vulnerabilities

•  DNSSEC protects against data spoofing
and corruption

Reminder: DNS Resolving

Resolver

Question:

www.apnic.net A

www.apnic.net A ?

Caching
forwarder
(recursive)

www.apnic.net A ?

“go ask net server @ X.gtld-servers.net”
 (+ glue)

gtld-server
www.apnic.net A ?

“go ask ripe server @ ns.apnic.net”
 (+ glue)

apnic-server

www.apnic.net A ?

“192.168.5.10”

192.168.5.10

1" 2"

3"

4"

5"

6"

7"

Add to cache
9"

8"

10" TTL

root-server

DNS: Data Flow

master Caching forwarder

Zone administrator

Zone file

Dynamic
updates

1"

2"

slaves

3"

4"

5"

resolver

DNS Vulnerabilities

master Caching forwarder

Zone administrator

Zone file

Dynamic
updates

1"

2"

slaves

3"

4"

5"

resolver

Server protection! Data protection!

Corrupting data" Impersonating master"

Unauthorized updates"

Cache impersonation"

Cache pollution by"
Data spoofing"

TSIG Protected Vulnerabilities

master Caching forwarder

Zone administrator

Zone file

Dynamic
updates

slaves
resolver

Impersonating master"

Unauthorized updates"

Vulnerabilities protected by
DNSKEY / RRSIG / NSEC

master Caching forwarder

Zone administrator

Zone file

Dynamic
updates

slaves
resolver

Cache impersonation"

Cache pollution by"
Data spoofing"

What is TSIG - Transaction Signature?

•  A mechanism for protecting a message from a primary to
secondary and vice versa

•  A keyed-hash is applied (like a digital signature) so
recipient can verify message
− DNS question or answer
− & the timestamp

•  Based on a shared secret - both sender and receiver are
configured with it

What is TSIG - Transaction Signature?

•  TSIG (RFC 2845)
− authorizing dynamic updates & zone transfers
− authentication of caching forwarders

•  Used in server configuration, not in zone file

15

SOA "
…"
SOA"

Sig ...!

Master"

AXFR"

TSIG example

Slave"
KEY:  
%sgs!f23fv!

KEY:  
%sgs!f23fv!

AXFR"

Sig ...!Sig ...!

SOA "
…"
SOA"

Sig ...!

Slave"
KEY:  
%sgs!f23fv!

verification"

verification"

Query: AXFR"

Response: Zone"

16

TSIG steps

1.  Generate secret

2.  Communicate secret

3.  Configure servers

4.  Test

TSIG - Names and Secrets

•  TSIG name
− A name is given to the key, the name is what is

transmitted in the message (so receiver knows
what key the sender used)

•  TSIG secret value
− A value determined during key generation
− Usually seen in Base64 encoding

TSIG – Generating a Secret

•  dnssec-keygen
− Simple tool to generate keys
− Used here to generate TSIG keys

> dnssec-keygen -a <algorithm> -b
<bits> -n host <name of the key>!

TSIG – Generating a Secret

•  Example!

> dnssec-keygen –a HMAC-MD5 –b 128 –n HOST ns1-
ns2.pcx.net

This will generate the key

> Kns1-ns2.pcx.net.+157+15921

>ls

 Kns1-ns2.pcx.net.+157+15921.key
 Kns1-ns2.pcx.net.+157+15921.private

TSIG – Generating a Secret

•  TSIG should never be put in zone files!!!
− might be confusing because it looks like RR:

ns1-ns2.pcx.net. IN KEY 128 3 157 nEfRX9…bbPn7lyQtE=!

TSIG – Configuring Servers

•  Configuring the key
− in named.conf file, same syntax as for rndc
− key { algorithm ...; secret ...;}

•  Making use of the key
− in named.conf file
− server x { key ...; }!
− where 'x' is an IP number of the other server

Configuration Example – named.conf
Primary server 10.33.40.46!

key ns1-ns2.pcx. net {!
!algorithm hmac-md5;!
!secret "APlaceToBe";!

};!
server 10.33.50.35 {!

!keys {ns1-ns2.pcx.net;};!
};!
zone "my.zone.test." {!

!type master;!
!file “db.myzone”;!
!allow-transfer {!
!key ns1-ns2..pcx.net ;};!

};!

Secondary server 10.33.50.35	

key ns1-ns2.pcx.net {!
!algorithm hmac-md5;!
!secret "APlaceToBe";!

};!
server 10.33.40.46 {!
 keys {ns1-ns2.pcx.net;};!
};!
zone "my.zone.test." {!

!type slave;!
!file “myzone.backup”;!
!masters {10.33.40.46;};!

};!

You can save this in a file and refer to it in the named.conf
using ‘include’ statement:
include “/var/named/master/tsig-key-ns1-ns2”;

23

TSIG Testing : dig
•  You can use dig to check TSIG

configuration
− dig @<server> <zone> AXFR -k <TSIG keyfile>!

$ dig @127.0.0.1 example.net AXFR \!
 -k Kns1-ns2.pcx.net.+157+15921.key!

•  Wrong key will give “Transfer failed” and
on the server the security-category will log
this.

TSIG Testing - TIME!

•  TSIG is time sensitive - to stop replays
− Message protection expires in 5 minutes
− Make sure time is synchronized
− For testing, set the time
− In operations, (secure) NTP is needed

DNS Vulnerabilities

master Caching forwarder

Zone administrator

Zone file

Dynamic
updates

1"

2"

slaves

3"

4"

5"

resolver

Server protection! Data protection!

Corrupting data" Impersonating master"

Unauthorized updates"

Cache impersonation"

Cache pollution by"
Data spoofing"

26

DNSSEC mechanisms
•  TSIG: provides mechanisms to authenticate

communication between servers

•  DNSKEY/RRSIG/NSEC: provides mechanisms to
establish authenticity and integrity of data

•  DS: provides a mechanism to delegate trust to public
keys of third parties

•  A secure DNS will be used as an infrastructure with public
keys
− However it is NOT a PKI

Vulnerabilities protected by
DNSKEY / RRSIG / NSEC

master Caching forwarder

Zone administrator

Zone file

Dynamic
updates

slaves
resolver

Cache impersonation"

Cache pollution by"
Data spoofing"

28

DNSSEC RRs
•  Data authenticity and integrity by signing the Resource

Records Sets with private key

•  Public DNSKEYs used to verify the RRSIGs

•  Children sign their zones with their private key
− Authenticity of that key established by signature/checksum by the

parent (DS)

•  Ideal case: one public DNSKEY distributed

29

New Resource Records
•  3 Public key crypto related RRs
− RRSIG

•  Signature over RRset made using private key

− DNSKEY
•  Public key, needed for verifying a RRSIG

− DS
•  Delegation Signer; ‘Pointer’ for building chains of authentication

•  One RR for internal consistency
− NSEC

•  Indicates which name is the next one in the zone and which
typecodes are available for the current name

•  authenticated non-existence of data

30

RR’s and RRsets
•  Resource Record:
− Name TTL class type rdata
www.example.net. 7200 IN A 192.168.1.1

•  RRset: RRs with same name, class and
type:

www.example.net. 7200 IN A 192.168.1.1

 A 10.0.0.3

 A 172.10.1.1

•  RRsets are signed, not the individual RRs

DNSKEY RDATA

Example:!

example.net. 3600 IN DNSKEY !256 3 5 (!

!! !AQOvhvXXU61Pr8sCwELcqqq1g4JJ!

!! !CALG4C9EtraBKVd+vGIF/unwigfLOA!

!! !O3nHp/cgGrG6gJYe8OWKYNgq3kDChN)!

RRSIG RDATA

example.net. 3600 IN RRSIG A 5 2 3600 (!

!20081104144523 20081004144523 3112 example.net.
VJ+8ijXvbrTLeoAiEk/qMrdudRnYZM1VlqhNvhYuAcYKe2X/
jqYfMfjfSUrmhPo+0/GOZjW66DJubZPmNSYXw==)!

33

Delegation Signer (DS)

•  Delegation Signer (DS) RR indicates that:
− delegated zone is digitally signed
− indicated key is used for the delegated zone

•  Parent is authorative for the DS of the childs
zone
− Not for the NS record delegating the childs zone!
− DS should not be in the childs zone

34

DS RDATA

$ORIGIN .net.

example.net. 3600 IN NS ns.example.net

ns.example.net. 3600 IN DS 3112 5 1 (
 239af98b923c023371b52

 1g23b92da12f42162b1a9

)

35

NSEC RDATA

•  Points to the next domain name in the zone
− also lists what are all the existing RRs for “name”
− NSEC record for last name “wraps around” to first

name in zone

•  Used for authenticated denial-of-existence of
data
− authenticated non-existence of TYPEs and labels

NSEC Record example

$ORIGIN example.net.!
@!SOA …!
!!NS!NS.example.net.!
!!DNSKEY !…!
!!NSEC mailbox.example.net. SOA NS NSEC DNSKEY !RRSIG!

mailbox!A !192.168.10.2 !!
!! ! !NSEC www.example.net. A NSEC RRSIG!

 WWW ! !A !192.168.10.3 !!
!! ! !TXT !Public webserver!
!! ! !NSEC example.net. A NSEC RRSIG TXT!

37

Setting up a secure zone

Enable dnssec

•  In the named.conf,

 Options {
 directory “….”
 dnssec-enable yes;
 dnssec-validation yes;
 };

Creation of keys

•  Zones are digitally signed using the private
key

•  Can use RSA-SHA-1, DSA-SHA-1 and
RSA-MD5 digital signatures

•  The public key corresponding to the private
key used to sign the zone is published
using a DNSKEY RR

Keys

•  Two types of keys
− Zone Signing Key (ZSK)

•  Sign the RRsets within the zone
•  Public key of ZSK is defined by a DNSKEY RR

− Key Signing Key (KSK)
•  Signed the keys which includes ZSK and KSK and may also be

used outside the zone
− Trusted anchor in a security aware server
− Part of the chain of trust by a parent name server

− Using a single key or both keys is an operational choice
(RFC allows both methods)

Creating key pairs
•  To create ZSK

> dnssec-keygen -a rsasha1 -b 1024 -n zone
champika.net

•  To create KSK
> dnssec-keygen -a rsasha1 -b 1400 -f KSK -n

zone champika.net

Publishing your public key

•  Using $INCLUDE you can call the public
key (DNSKEY RR) inside the zone file
−  $INCLUDE /path/Kchampika.net.+005+33633.key ; ZSK

−  $INCLUDE /path/Kchampika.net.+005+00478.key ; KSK

•  You can also manually enter the DNSKEY
RR in the zone file

Signing the zone

> dnssec-signzone –o champika.net -t -k
Kchampika.net.+005+00478 db.champika.net
Kchampika.net.+005+33633

•  Once you sign the zone a file with a .signed
extension will be created
- db.champika.net.signed

Testing the server

•  Ask a dnssec enabled question from the
server and see whether the answer
contains dnssec-enabled data
− Basically the answers are signed

> dig @localhost www.champika.net +dnssec +multiline

Testing with dig: an example

Questions ?

Reverse DNS

Overview

•  Principles
•  Creating reverse zones
•  Setting up nameservers
•  Reverse delegation procedures

What is ‘Reverse DNS’?

•  ‘Forward DNS’ maps names to numbers
− svc00.apnic.net -> 202.12.28.131

•  ‘Reverse DNS’ maps numbers to names
− 202.12.28.131 -> svc00.apnic.net

Reverse DNS - why bother?

•  Service denial
•  That only allow access when fully reverse delegated

eg. anonymous ftp

•  Diagnostics
• Assisting in trace routes etc

•  SPAM identifications
•  Registration responsibilities

 whois

Principles – DNS tree

net edu com sg

whois

apnic

arpa

22 .64 .in-addr .202 .arpa

- Mapping numbers to names - ‘reverse DNS’

202 203 210 211.. 202 RIR

64 64 ISP

22 22 Customer

in-addr

Creating reverse zones

•  Same as creating a forward zone file
− SOA and initial NS records are the same as

normal zone
− Main difference

•  need to create additional PTR records

•  Can use BIND or other DNS software to
create and manage reverse zones
− Details can be different

Creating reverse zones - contd

•  Files involved
− Zone files

•  Forward zone file
− e.g. db.domain.net

•  Reverse zone file
− e.g. db.192.168.254

− Config files
•  <named.conf>

− Other
•  Hints files etc.

− Root.hints

Start of Authority (SOA) record

<domain.name.> CLASS SOA <hostname.domain.name.>
<mailbox.domain.name> (

 <serial-number>
 <refresh>

 <retry>
 <expire>

 <negative-caching>)

253.253.192.in-addr.arpa.

Pointer (PTR) records

•  Create pointer (PTR) records for each IP address

 or

131.28.12.202.in-addr.arpa. IN PTR svc00.apnic.net.

 131 IN PTR svc00.apnic.net.

A reverse zone example

Note trailing dots"

 $ORIGIN 1.168.192.in-addr.arpa.
 @ 3600 IN SOA test.company.org. (
 sys\.admin.company.org.
 2002021301 ; serial
 1h ; refresh
 30M ; retry
 1W ; expiry
 3600) ; neg. answ. ttl

 NS ns.company.org.
 NS ns2.company.org.

 1 PTR gw.company.org.
 router.company.org.

 2 PTR ns.company.org.
 ;auto generate: 65 PTR host65.company.org
 $GENERATE 65-127 $ PTR host$.company.org.

Setting up the primary nameserver

•  Add an entry specifying the primary server to the
named.conf file

•  <domain-name>
− Ex: 28.12.202.in-addr.arpa.

•  <type master>
− Define the name server as the primary

•  <path-name>
−  location of the file that contains the zone records

zone "<domain-name>" in {
type master;
file "<path-name>"; };

Setting up the secondary nameserver

•  Add an entry specifying the primary server to the
named.conf file

•  <type slave> defines the name server as the secondary

•  <ip address> is the IP address of the primary name server

•  <domain-name> is same as before

•  <path-name> is where the back-up file is

zone "<domain-name>" in {
type slave;
file "<path-name>";
Masters { <IP address> ; }; };

Reverse delegation requirements

•  /24 Delegations
• Address blocks should be assigned/allocated
• At least two name servers

•  /16 Delegations
• Same as /24 delegations
• APNIC delegates entire zone to member
• Recommend APNIC secondary zone

•  < /24 Delegations
• Read “classless in-addr.arpa delegation”

RFC
2317

APNIC & ISPs responsibilities

•  APNIC
− Manage reverse delegations of address block

distributed by APNIC
− Process organisations requests for reverse delegations

of network allocations

•  Organisations
− Be familiar with APNIC procedures
− Ensure that addresses are reverse-mapped
− Maintain nameservers for allocations

•  Minimise pollution of DNS

Subdomains of in-addr.arpa domain

•  Example: an organisation given a /16
− 192.168.0.0/16 (one zone file and further delegations to

downstreams)
− 168.192.in-addr.arpa zone file should have:

0.168.192.in-addr.arpa. NS ns1.organisation0.com.
0.168.192.in-addr.arpa. NS ns2.organisation0.com.
1.168.192.in-addr.arpa. NS ns1.organisation1.com.
1.168.192.in-addr.arpa. NS ns2.organisation1.com.
2.168.192.in-addr.arpa. NS ns1.organisation2.com.
2.168.192.in-addr.arpa. NS ns2.organisation2.com.
 :

Subdomains of in-addr.arpa domain

•  Example: an organisation given a /20
− 192.168.0.0/20 (a lot of zone files!) – have to do it per /

24)
− Zone files

0.168.192.in-addr.arpa.

1.168.192.in-addr.arpa.

2.168.192.in-addr.arpa.

:

:

15.168.192.in-addr.arpa.

Reverse delegation procedures

•  Standard APNIC database object,
− can be updated through myAPNIC.

•  Nameserver/domain set up verified before being submitted
to the database.

•  Protection by maintainer object
− (current auths: CRYPT-PW, PGP)

•  Any queries
− Contact <helpdesk@apnic.net>

Whois domain object

domain: 28.12.202.in-addr.arpa
descr: in-addr.arpa zone for 28.12.202.in-addr.arpa
admin-c: DNS3-AP
tech-c: DNS3-AP
zone-c: DNS3-AP
nserver: ns.telstra.net
nserver: rs.arin.net
nserver: ns.myapnic.net
nserver: svc00.apnic.net
nserver: ns.apnic.net
mnt-by: MAINT-APNIC-AP
mnt-lower: MAINT-DNS-AP
changed: inaddr@apnic.net 19990810
source: APNIC

Reverse Zone

Contacts

Name
Servers

Maintainers
(protection)

Removing lame delegations

•  Objective
− To repair or remove persistently lame DNS

delegations
•  DNS delegations are lame if:
− Some or all of the registered DNS nameservers

are unreachable or badly configured

•  APNIC has formal implementation of the
lame DNS reverse delegation procedures

Questions ?

Thank you !
<champika@apnic.net>

