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DNS Security : 
DNSSEC Deployment 



Overview 

•  Introduction  
− DNSSEC support in BIND 
− Why DNSSEC? 

•  DNSSEC mechanisms 
− To authenticate servers (TSIG ) 
− To establish authenticity and integrity of data 

•  Quick overview 
•  New RRs 
•  Using public key cryptography to sign a single zone 
•  Delegating signing authority ; building chains of trust 
•  Key exchange and rollovers 

•  Steps 



Background 

•  The original DNS protocol wasn’t designed with security in 
mind 

•  It has very few built-in security mechanism 

•  As the Internet grew wilder & wollier, IETF realized this 
would be a problem 
− For example DNS spoofing was to easy 

•  DNSSEC and TSIG were develop to help address this 
problem 
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DNS Protocol Vulnerability 

•  DNS data can be spoofed and corrupted between master 
server and resolver or forwarder 

•  The DNS protocol does not allow you to check the 
validity of DNS data 
− Exploited by bugs in resolver implementation (predictable 

transaction ID) 
− Polluted caching forwarders can cause harm for quite some time 

(TTL) 
− Corrupted DNS data might end up in caches and stay there for a 

long time 

•  How does a slave (secondary) knows it is talking to the 
proper master (primary)? 



Why DNSSEC? 

•  DNS is not secure 
− Applications depend on DNS 

• Known vulnerabilities 

•  DNSSEC protects against data spoofing 
and corruption 
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TSIG Protected Vulnerabilities 
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DNSKEY / RRSIG / NSEC 
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What is TSIG - Transaction Signature? 

•  A mechanism for protecting a message from a primary to 
secondary and vice versa 

•  A keyed-hash is applied (like a digital signature) so 
recipient can verify message 
− DNS question or answer 
− & the timestamp 

•  Based on a shared secret - both sender and receiver are 
configured with it 



What is TSIG - Transaction Signature? 

•  TSIG (RFC 2845) 
− authorizing dynamic updates & zone transfers 
− authentication of caching forwarders 

•  Used in server configuration, not in zone file 
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TSIG steps 

1.  Generate secret 

2.  Communicate secret 

3.  Configure servers 

4.  Test 



TSIG - Names and Secrets 

•  TSIG name 
− A name is given to the key, the name is what is 

transmitted in the message (so receiver knows 
what key the sender used) 

•  TSIG secret value 
− A value determined during key generation 
− Usually seen in Base64 encoding 



TSIG – Generating a Secret 

•  dnssec-keygen 
− Simple tool to generate keys 
− Used here to generate TSIG keys 

> dnssec-keygen -a <algorithm> -b 
<bits> -n host <name of the key>!



TSIG – Generating a Secret 

•  Example!

> dnssec-keygen –a HMAC-MD5 –b 128 –n HOST ns1-
ns2.pcx.net 

This will generate the key 

> Kns1-ns2.pcx.net.+157+15921 

>ls 

 Kns1-ns2.pcx.net.+157+15921.key 
 Kns1-ns2.pcx.net.+157+15921.private 



TSIG – Generating a Secret 

•  TSIG should never be put in zone files!!! 
− might be confusing because it looks like RR: 

ns1-ns2.pcx.net. IN KEY 128 3 157 nEfRX9…bbPn7lyQtE=!



TSIG – Configuring Servers 

•  Configuring the key 
− in named.conf file, same syntax as for rndc 
− key { algorithm ...; secret ...;} 

•  Making use of the key 
− in named.conf file 
− server x { key ...; }!
− where 'x' is an IP number of the other server 



Configuration Example – named.conf 
Primary server 10.33.40.46!

key ns1-ns2.pcx. net {!
!algorithm hmac-md5;!
!secret "APlaceToBe";!

};!
server 10.33.50.35 {!

!keys {ns1-ns2.pcx.net;};!
};!
zone "my.zone.test." {!

!type master;!
!file “db.myzone”;!
!allow-transfer {!
!key ns1-ns2..pcx.net ;};!

};!

Secondary server 10.33.50.35	



key ns1-ns2.pcx.net {!
!algorithm hmac-md5;!
!secret "APlaceToBe";!

};!
server 10.33.40.46 {!
  keys {ns1-ns2.pcx.net;};!
};!
zone "my.zone.test." {!

!type slave;!
!file “myzone.backup”;!
!masters {10.33.40.46;};!

};!

You can save this in a file and refer to it in the named.conf  
using ‘include’ statement: 
include “/var/named/master/tsig-key-ns1-ns2”;  



23 

TSIG Testing : dig 
•  You can use dig to check TSIG 

configuration 
− dig  @<server> <zone> AXFR -k <TSIG keyfile>!

$ dig @127.0.0.1 example.net AXFR \!
  -k Kns1-ns2.pcx.net.+157+15921.key!

•  Wrong key will give “Transfer failed” and 
on the server the security-category will log 
this. 



TSIG Testing - TIME! 

•  TSIG is time sensitive - to stop replays 
− Message protection expires in 5 minutes 
− Make sure time is synchronized 
− For testing, set the time 
− In operations, (secure) NTP is needed 
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DNSSEC mechanisms 
•  TSIG: provides mechanisms to authenticate 

communication between servers 

•  DNSKEY/RRSIG/NSEC: provides mechanisms to 
establish authenticity and integrity of data 

•  DS: provides a mechanism to delegate trust to public 
keys of third parties 

•  A secure DNS will be used as an infrastructure with public 
keys 
− However it is NOT a PKI 
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DNSSEC RRs 
•  Data authenticity and integrity by signing the Resource 

Records Sets with private key 

•  Public DNSKEYs used to verify the RRSIGs 

•  Children sign their zones with their private key 
− Authenticity of that key established by signature/checksum by the 

parent (DS) 

•  Ideal case: one public DNSKEY distributed 
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New Resource Records 
•  3 Public key crypto related RRs 
− RRSIG  

•  Signature over RRset made using private key  

− DNSKEY 
•  Public key, needed for verifying a RRSIG 

− DS 
•  Delegation Signer; ‘Pointer’ for building chains of authentication 

•  One RR for internal consistency  
− NSEC 

•  Indicates which name is the next one in the zone and which 
typecodes are available for the current name 

•  authenticated non-existence of data 
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RR’s and RRsets 
•  Resource Record: 
− Name   TTL  class   type  rdata 
www.example.net.  7200  IN     A      192.168.1.1 

•  RRset: RRs with same name, class and 
type: 

www.example.net.  7200  IN  A  192.168.1.1 

      A  10.0.0.3 

      A  172.10.1.1 

•  RRsets are signed, not the individual RRs 



DNSKEY RDATA 

Example:!

example.net. 3600 IN DNSKEY !256  3  5   (!

!! !AQOvhvXXU61Pr8sCwELcqqq1g4JJ!

!! !CALG4C9EtraBKVd+vGIF/unwigfLOA!

!! !O3nHp/cgGrG6gJYe8OWKYNgq3kDChN)!



RRSIG RDATA 

example.net.  3600 IN  RRSIG   A  5  2  3600  (!

!20081104144523 20081004144523  3112  example.net.  
VJ+8ijXvbrTLeoAiEk/qMrdudRnYZM1VlqhNvhYuAcYKe2X/
jqYfMfjfSUrmhPo+0/GOZjW66DJubZPmNSYXw== )!
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Delegation Signer (DS) 

•  Delegation Signer (DS) RR indicates that: 
− delegated zone is digitally signed 
− indicated key is used for the delegated zone 

•  Parent is authorative for the DS of the childs 
zone 
− Not for the NS record delegating the childs zone! 
− DS should not be in the childs zone 
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DS RDATA 

$ORIGIN .net. 

example.net.    3600 IN   NS   ns.example.net 

ns.example.net.  3600 IN   DS   3112  5 1 ( 
                                239af98b923c023371b52 

                                1g23b92da12f42162b1a9 

                                )   
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NSEC RDATA 

•  Points to the next domain name in the zone 
− also lists what are all the existing RRs for “name” 
− NSEC record for last name “wraps around” to first 

name in zone  

•  Used for authenticated denial-of-existence of 
data 
− authenticated non-existence of TYPEs and labels 



NSEC Record example 

$ORIGIN example.net.!
@!SOA       …!
!!NS!NS.example.net.!
!!DNSKEY !…!
!!NSEC   mailbox.example.net. SOA NS NSEC DNSKEY !RRSIG!

mailbox!A !192.168.10.2 !!
!! ! !NSEC  www.example.net.  A NSEC RRSIG!

 WWW ! !A !192.168.10.3 !!
!! ! !TXT !Public webserver!
!! ! !NSEC  example.net. A NSEC RRSIG TXT!
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Setting up a secure zone 



Enable dnssec 

•  In the named.conf, 

 Options {  
   directory “….” 
   dnssec-enable yes; 
      dnssec-validation yes; 
   }; 



Creation of keys 

•  Zones are digitally signed using the private 
key 

•  Can use RSA-SHA-1, DSA-SHA-1 and 
RSA-MD5 digital signatures 

•  The public key corresponding to the private 
key used to sign the zone is published 
using a DNSKEY RR 



Keys 

•  Two types of keys 
− Zone Signing Key (ZSK) 

•  Sign the RRsets within the zone  
•  Public key of ZSK is defined by a DNSKEY RR 

− Key Signing Key (KSK) 
•  Signed the keys which includes ZSK and KSK and may also be 

used outside the zone 
− Trusted anchor in a security aware server  
− Part of the chain of trust by a parent name server 

− Using a single key or both keys is an operational choice 
(RFC allows both methods) 



Creating key pairs 
•  To create ZSK 

> dnssec-keygen -a rsasha1 -b 1024 -n zone 
champika.net 

•  To create KSK 
> dnssec-keygen -a rsasha1 -b 1400 -f KSK -n 

zone champika.net 



Publishing your public key 

•  Using $INCLUDE you can call the public 
key (DNSKEY RR) inside the zone file 
−  $INCLUDE /path/Kchampika.net.+005+33633.key ; ZSK 

−  $INCLUDE /path/Kchampika.net.+005+00478.key ; KSK 

•  You can also manually enter the DNSKEY 
RR in the zone file 



Signing the zone 

> dnssec-signzone –o champika.net -t -k 
Kchampika.net.+005+00478 db.champika.net 
Kchampika.net.+005+33633 

•  Once you sign the zone a file with a .signed 
extension will be created 
- db.champika.net.signed 



Testing the server 

•  Ask a dnssec enabled question from the 
server and see whether the answer 
contains dnssec-enabled data 
− Basically the answers are signed 

> dig @localhost www.champika.net +dnssec +multiline 



Testing with dig: an example 



Questions ? 



Reverse DNS  



Overview 

•  Principles   
•  Creating reverse zones 
•  Setting up nameservers 
•  Reverse delegation procedures 



What is ‘Reverse DNS’? 

•  ‘Forward DNS’ maps names to numbers 
− svc00.apnic.net -> 202.12.28.131 

•  ‘Reverse DNS’ maps numbers to names 
− 202.12.28.131 -> svc00.apnic.net 



Reverse DNS - why bother? 

•  Service denial 
•  That only allow access when fully reverse delegated 

eg. anonymous ftp 

•  Diagnostics 
• Assisting in trace routes etc 

•  SPAM identifications 
•  Registration responsibilities 
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Creating reverse zones 

•  Same as creating a forward zone file 
− SOA and initial NS records are the same as 

normal zone 
− Main difference 

•  need to create additional PTR records  

•  Can use BIND or other DNS software to 
create and manage reverse zones 
− Details can be different 



Creating reverse zones - contd 

•  Files involved 
− Zone files 

•  Forward zone file 
− e.g. db.domain.net 

•  Reverse zone file 
− e.g. db.192.168.254 

− Config files 
•  <named.conf> 

− Other 
•  Hints files etc. 

− Root.hints  



Start of Authority (SOA) record 

<domain.name.>  CLASS  SOA  <hostname.domain.name.> 
<mailbox.domain.name> (       

      <serial-number>  
      <refresh> 

       <retry> 
       <expire>  

      <negative-caching> ) 

253.253.192.in-addr.arpa. 



Pointer (PTR) records 

•  Create pointer (PTR) records for each IP address  

          or 

131.28.12.202.in-addr.arpa. IN PTR svc00.apnic.net.  

 131     IN    PTR     svc00.apnic.net.  



A reverse zone example 

Note trailing dots"

 $ORIGIN 1.168.192.in-addr.arpa. 
 @  3600  IN SOA test.company.org. ( 
    sys\.admin.company.org.  
    2002021301  ; serial 
    1h   ; refresh 
    30M   ; retry 
    1W   ; expiry 
    3600 )  ; neg. answ. ttl 

  NS  ns.company.org. 
  NS  ns2.company.org. 

 1  PTR  gw.company.org. 
   router.company.org. 

 2  PTR  ns.company.org. 
 ;auto generate:  65 PTR host65.company.org 
 $GENERATE 65-127 $ PTR host$.company.org. 



Setting up the primary nameserver  

•  Add an entry specifying the primary server to the 
named.conf file 

•  <domain-name> 
− Ex: 28.12.202.in-addr.arpa.  

•  <type master> 
− Define the name server as the primary 

•  <path-name> 
−  location of the file that contains the zone records   

zone "<domain-name>" in {  
type master;  
file "<path-name>"; };  



Setting up the secondary nameserver  

•  Add an entry specifying the primary server to the 
named.conf file 

•  <type slave> defines the name server as the secondary 

•  <ip address> is the IP address of the primary name server 

•  <domain-name> is same as before 

•  <path-name> is where the back-up file is 

zone "<domain-name>" in {  
type slave;  
file "<path-name>"; 
Masters { <IP address> ; }; }; 



Reverse delegation requirements 

•  /24 Delegations 
• Address blocks should be assigned/allocated 
• At least two name servers 

•  /16 Delegations 
• Same as /24 delegations 
• APNIC delegates entire zone to member 
• Recommend APNIC secondary zone 

•  < /24 Delegations 
• Read “classless in-addr.arpa delegation” 

RFC 
2317 



APNIC & ISPs responsibilities 

•  APNIC 
− Manage reverse delegations of address block 

distributed by APNIC  
− Process organisations requests for reverse delegations 

of network allocations 

•  Organisations 
− Be familiar with APNIC procedures 
− Ensure that addresses are reverse-mapped 
− Maintain nameservers for allocations 

•  Minimise pollution of DNS 



Subdomains of in-addr.arpa domain 

•  Example: an organisation given a /16 
− 192.168.0.0/16 (one zone file and further delegations to 

downstreams) 
− 168.192.in-addr.arpa zone file should have: 

0.168.192.in-addr.arpa.  NS ns1.organisation0.com. 
0.168.192.in-addr.arpa.  NS ns2.organisation0.com. 
1.168.192.in-addr.arpa.  NS ns1.organisation1.com. 
1.168.192.in-addr.arpa.  NS ns2.organisation1.com. 
2.168.192.in-addr.arpa.  NS ns1.organisation2.com. 
2.168.192.in-addr.arpa.  NS ns2.organisation2.com. 
        : 



Subdomains of in-addr.arpa domain 

•  Example: an organisation given a /20 
− 192.168.0.0/20 (a lot of zone files!) – have to do it per /

24) 
− Zone files 

0.168.192.in-addr.arpa.  

1.168.192.in-addr.arpa.  

2.168.192.in-addr.arpa.  

: 

: 

15.168.192.in-addr.arpa. 



Reverse delegation procedures 

•  Standard APNIC database object,  
− can be updated through myAPNIC. 

•  Nameserver/domain set up verified before being submitted 
to the database. 

•  Protection by maintainer object 
− (current auths:  CRYPT-PW, PGP) 

•  Any queries 
− Contact <helpdesk@apnic.net> 



Whois domain object 

domain:      28.12.202.in-addr.arpa 
descr:       in-addr.arpa zone for 28.12.202.in-addr.arpa 
admin-c:     DNS3-AP 
tech-c:      DNS3-AP 
zone-c:      DNS3-AP 
nserver:     ns.telstra.net 
nserver:     rs.arin.net 
nserver:     ns.myapnic.net 
nserver:     svc00.apnic.net 
nserver:     ns.apnic.net 
mnt-by:      MAINT-APNIC-AP 
mnt-lower:   MAINT-DNS-AP 
changed:     inaddr@apnic.net 19990810 
source:      APNIC 

Reverse Zone 

Contacts 

Name 
Servers 

Maintainers 
(protection) 



Removing lame delegations 

•  Objective 
− To repair or remove persistently lame DNS 

delegations  
•  DNS delegations are lame if: 
− Some or all of the registered DNS nameservers 

are unreachable or badly configured 

•  APNIC has formal implementation of the 
lame DNS reverse delegation procedures  



Questions ? 



Thank you ! 
<champika@apnic.net> 


