

## BGP Scaling Techniques How does a service provider: Scale the iBGP mesh beyond a few peers? Implement new policy without causing flaps and route churning? Keep the network stable, scalable, as well as simple?





### Route Refresh Capability Facilitates non-disruptive policy changes No configuration is needed

- Automatically negotiated at peer establishment
- No additional memory is used
- Requires peering routers to support "route refresh capability" – RFC2918
- clear ip bgp x.x.x.x in tells peer to resend full BGP announcement
- clear ip bgp x.x.x.x out resends full BGP
  announcement to peer













### **Peer Groups**

- Problem how to scale iBGP Large iBGP mesh slow to build iBGP neighbours receive the same update Router CPU wasted on repeat calculations
- Solution peer-groups
   Group peers with the same outbound policy
   Updates are generated once per group

### Peer Groups – Advantages

- Makes configuration easier
- Makes configuration less prone to error
- Makes configuration more readable
- Lower router CPU load

**Configuring a Peer Group** 

- iBGP mesh builds more quickly
- Members can have different inbound policy
- Can be used for eBGP neighbours too!

### **Configuring a Peer Group**

| router bgp                                     | b 100                                                |
|------------------------------------------------|------------------------------------------------------|
| neighbor                                       | ibgp-peer peer-group                                 |
| neighbor                                       | ibgp-peer remote-as 100                              |
| neighbor                                       | ibgp-peer update-source loopback 0                   |
| neighbor                                       | ibgp-peer send-community                             |
| neighbor                                       | ibgp-peer route-map outfilter out                    |
| neighbor                                       | 1.1.1.1 peer-group ibgp-peer                         |
| neighbor                                       | 2.2.2.2 peer-group ibgp-peer                         |
| neighbor                                       | 2.2.2.2 route-map infilter in                        |
| neighbor                                       | 3.3.3.3 peer-group ibgp-peer                         |
| $\frac{1}{10000000000000000000000000000000000$ | 2.2.2 has different inbound filter from peer-group ! |

| r         | outer bg | p 100                                  |
|-----------|----------|----------------------------------------|
|           | neighbor | external-peer peer-group               |
|           | neighbor | external-peer send-community           |
|           | neighbor | external-peer route-map set-metric out |
|           | neighbor | 160.89.1.2 remote-as 200               |
|           | neighbor | 160.89.1.2 peer-group external-peer    |
|           | neighbor | 160.89.1.4 remote-as 300               |
|           | neighbor | 160.89.1.4 peer-group external-peer    |
|           | neighbor | 160.89.1.6 remote-as 400               |
|           | neighbor | 160.89.1.6 peer-group external-peer    |
|           | neighbor | 160.89.1.6 filter-list infilter in     |
| Cisco ISP |          |                                        |
|           |          |                                        |

### **Peer Groups**

- Always configure peer-groups for iBGP Even if there are only a few iBGP peers Easier to scale network in the future
- Consider using peer-groups for eBGP
   Especially useful for multiple BGP customers using same AS (RFC2270)

   Also useful at Exchange Points where ISP policy is generally the same to each peer

### Cisco Systems militarentime Route Flap Damping Stabilising the Network

### **Route Flap Damping**

### Route flap

Going up and down of path or change in attribute BGP WITHDRAW followed by UPDATE = 1 flap eBGP neighbour going down/up is NOT a flap Ripples through the entire Internet Wastes CPU

 Damping aims to reduce scope of route flap propagation

### **Route Flap Damping (continued)**

Requirements

Fast convergence for normal route changes History predicts future behaviour Suppress oscillating routes Advertise stable routes

Implementation described in RFC 2439

### Operation

- Add penalty (1000) for each flap
   Change in attribute gets penalty of 500
- Exponentially decay penalty
   half life determines decay rate
- Penalty above suppress-limit do not advertise route to BGP peers
- Penalty decayed below reuse-limit re-advertise route to BGP peers penalty reset to zero when it is half of reuse-limit



### Operation

- Only applied to inbound announcements from eBGP peers
- Alternate paths still usable
- Controlled by: Half-life (default 15 minutes)
  - reuse-limit (default 750)
  - suppress-limit (default 2000) maximum suppress time (default 60 minutes)

### Configuration

### Fixed damping

router bgp 100
bgp dampening [<half-life> <reuse-value> <suppresspenalty> <maximum suppress time>]

### Selective and variable damping

bgp dampening [route-map <name>]
route-map <name> permit 10
match ip address prefix-list FLAP-LIST
set dampening [<half-life> <reuse-value> <suppresspenalty> <maximum suppress time>]
ip prefix-list FLAP-LIST permit 192.0.2.0/24 le 32

### Operation

- · Care required when setting parameters
- Penalty must be less than reuse-limit at the maximum suppress time
- Maximum suppress time and half life must allow penalty to be larger than suppress limit



# Configuration Maths! • Examples - ★ bgp dampening 15 500 2500 30 reuse-limit of 500 means maximum possible penalty is 2000 - no prefixes suppressed as penalty cannot exceed suppress-limit. • Maximum value of penalty is max-penalty is 2000 - no prefixes suppressed as penalty cannot exceed suppress-limit. • Examples - ✓ bgp dampening 15 750 3000 45 reuse-limit of 750 means maximum possible penalty is 6000 - suppress limit is easily reached • Always make sure that suppress-limit is LESS than max-penalty otherwise there will be no route damping























### **BGP Scaling Techniques**

- These 4 techniques should be core requirements on all ISP networks
  - Route Refresh (or Soft Reconfiguration) Peer groups
  - Route Flap Damping
  - **Route Reflectors**









### **Confederation: Principle**

- Local preference and MED influence path selection
- Preserve local preference and MED across sub-AS boundary
- Sub-AS eBGP path administrative distance

### **Confederations: Loop Avoidance**

- · Sub-AS traversed are carried as part of AS-path
- AS-sequence and AS path length
- Confederation boundary
- AS-sequence should be skipped during MED comparison



### **Route Propagation Decisions**

- Same as with "normal" BGP: From peer in same sub-AS → only to external peers From external peers → to all neighbors
   "External peers" refers to
- Peers outside the confederation Peers in a different sub-AS

### Preserve LOCAL\_PREF, MED and NEXT\_HOP

| Confederatio                                     | ns (cont                | .)       |          |          |          |     |
|--------------------------------------------------|-------------------------|----------|----------|----------|----------|-----|
|                                                  |                         |          |          |          |          |     |
| <ul> <li>Example (con</li> </ul>                 | it.):                   |          |          |          |          |     |
| BGP table versi                                  | on is 78, lo            | cal rout | ter ID : | is 141.1 | 153.17.1 |     |
| Status codes: s<br>best, i - inter               |                         | d dampe  | ed, h h: | istory,  | * valid  | , > |
| Origin codes: i                                  | - IGP, e - 1            | EGP, ? · | - incom  | plete    |          |     |
| Network                                          | Next Hop                | Metric   | LocPrf   | Weight   | Path     |     |
| *> 10.0.0.0                                      | 141.153.14.3            | 0        | 100      | 0        | (65531)  | 1 i |
| *> 141.153.0.0                                   | 141.153.30.2            | 0        | 100      | 0        | (65530)  | i   |
| *> 144.10.0.0                                    | 141.153.12.1            | 0        | 100      | 0        | (65530)  | i   |
| *> 199.10.10.0                                   | 141.153.29.2            | 0        | 100      | 0        | (65530)  | 1 i |
|                                                  |                         |          |          |          |          |     |
|                                                  |                         |          |          |          |          |     |
| Cisco ISP<br>Workshops © 2005, Cisco Systems, in | c. All rights reserved. |          |          |          |          | 53  |



### **Confederations: Benefits**

- Solves iBGP mesh problem
- Packet forwarding not affected
- Can be used with route reflectors
- Policies could be applied to route traffic between sub-AS's

### **Confederations: Caveats**

- Minimal number of sub-AS
- Sub-AS hierarchy
- Minimal inter-connectivity between sub-AS's
- Path diversity
- Difficult migration
   BGP reconfigured into sub-AS
   must be applied across the network

|                     | Internet<br>Connectivity      | Multi-Level<br>Hierarchy | Policy<br>Control | Scalability | Migration<br>Complexity |
|---------------------|-------------------------------|--------------------------|-------------------|-------------|-------------------------|
| Confederations      | Anywhere<br>in the<br>Network | Yes                      | Yes               | Medium      | Medium<br>to High       |
| Route<br>Reflectors | Anywhere<br>in the<br>Network | Yes                      | Yes               | Very High   | Very Low                |

