

BGP Attributes and Policy Control

ISP/IXP Workshops

Cisco ISP Workshops

© `2005, Cisco Systems, Inc. All rights reserved.

Agenda

- BGP Attributes
- BGP Path Selection
- Applying Policy

BGP Attributes

The "tools" available for the job

Cisco ISP Workshops

© `2005, Cisco Systems, Inc. All rights reserved.

What Is an Attribute?

- Describes the characteristics of prefix
- Transitive or non-transitive
- Some are mandatory

AS-Path

AS-Path loop detection

Cisco ISP Workshops

Next Hop

Cisco ISP Workshops

iBGP Next Hop

Recursive route look-up

Workshops

© 2005, Cisco Systems, Inc. All rights reserved.

Third Party Next Hop

eBGP between Router A and Router C

- **iBGP** between RouterA and RouterB
- 120.68.1/24 prefix has next hop address of 150.1.1.3 – this is passed on to RouterC instead of 150.1.1.2
- More efficient
- No extra config needed

Next Hop (summary)

- IGP should carry route to next hops
- Recursive route look-up
- Unlinks BGP from actual physical topology
- Allows IGP to make intelligent forwarding decision

Origin

- Conveys the origin of the prefix
- "Historical" attribute
- Influences best path selection
- Three values: IGP, EGP, incomplete
 - **IGP generated by BGP network statement**

EGP – generated by EGP

incomplete – redistributed from another routing protocol

Aggregator

- Useful for debugging purposes
- Conveys the IP address of the router/BGP speaker generating the aggregate route
- Does not influence path selection

Local Preference

• Local to an AS – non-transitive

local preference set to 100 when heard from neighbouring AS

Used to influence BGP path selection

determines best path for outbound traffic

Path with highest local preference wins

Local Preference

Configuration of Router B:

```
router bgp 400
neighbor 120.5.1.1 remote-as 300
neighbor 120.5.1.1 route-map local-pref in
!
route-map local-pref permit 10
match ip address prefix-list MATCH
set local-preference 800
!
ip prefix-list MATCH permit 160.10.0.0/16
```

Multi-Exit Discriminator (MED)

Multi-Exit Discriminator

- Inter-AS non-transitive & optional attribute
- Used to convey the relative preference of entry points

determines best path for *inbound* traffic

Comparable if paths are from same AS

bgp always-compared-med allows comparisons of MEDs from different ASes

- Path with lowest MED wins
- Absence of MED attribute implies MED value of zero (draft-ietf-idr-bgp4-26.txt)

MED & IGP Metric

• IGP metric can be conveyed as MED

set metric-type internal in route-map

enables BGP to advertise a MED which corresponds to the IGP metric values

changes are monitored (and re-advertised if needed) every 600s

bgp dynamic-med-interval <secs>

Multi-Exit Discriminator

• Configuration of Router B:

```
router bgp 400
neighbor 120.5.1.1 remote-as 200
neighbor 120.5.1.1 route-map set-med out
!
route-map set-med permit 10
match ip address prefix-list MATCH
set metric 1000
!
ip prefix-list MATCH permit 120.68.1.0/24
```

Weight

- Not really an attribute local to router
- Highest weight wins
- Applied to all routes from a neighbour

neighbor 120.5.7.1 weight 100

Weight assigned to routes based on filter

neighbor 120.5.7.3 filter-list 3 weight 50

Weight – Used to help Deploy RPF

- Best path to AS4 from AS1 is always via B due to local-pref
- But packets arriving at A from AS4 over the direct C to A link will pass the RPF check as that path has a priority due to the weight being set

If weight was not set, best path back to AS4 would be via B, and the RPF check would fail

Community

- Communities are described in RFC1997
 - **Transitive & Optional attribute**
- 32 bit integer
 - Represented as two 16 bit integers (RFC1997/8)
 - Common format is <*local-ASN*>:xx
 - 0:0 to 0:65535 and 65535:0 to 65535:65535 are reserved
- Used to group destinations
 - Each destination could be member of multiple communities
- Very useful for applying policies within and between ASes

Community

Well-Known Communities

Several well known communities

www.iana.org/assignments/bgp-well-known-communities

• no-export 65535:65281

do not advertise to any eBGP peers

no-advertise
 65535:65282

do not advertise to any BGP peer

no-export-subconfed
 65535:65283

do not advertise outside local AS (only used with confederations)

• no-peer

65535:65284

do not advertise to bi-lateral peers (RFC3765)

No-Export Community

AS100 announces aggregate and subprefixes

aim is to improve loadsharing by leaking subprefixes

- Subprefixes marked with no-export community
- Router G in AS200 does not announce prefixes with no-export community set

Cisco ISP Workshops

No-Peer Community

 Sub-prefixes marked with no-peer community are not sent to bi-lateral peers

They are only sent to upstream providers

Cisco ISP Workshops

Summary Attributes in Action

Network	Next Hop	Metric	LocPrf	Weight	Path
*> 100.1.0.0/20	0.0.0	0		32768	i
*>i100.1.16.0/20	100.1.31.224	0	100	0	i
*>i100.1.32.0/19	100.1.63.224	0	100	0	i

. . .

BGP Path Selection Algorithm

Why is this the best path?

Cisco ISP Workshops

© `2005, Cisco Systems, Inc. All rights reserved.

- Do not consider path if no route to next hop
- Do not consider iBGP path if not synchronised
- Highest weight (local to router)
- Highest local preference (global within AS)
- Prefer locally originated route
- Shortest AS path

BGP Path Selection Algorithm (continued)

- Lowest origin code
 IGP < EGP < incomplete
- Lowest Multi-Exit Discriminator (MED)

If bgp deterministic-med, order the paths before comparing

If bgp always-compare-med, then compare for all paths

otherwise MED only considered if paths are from the same AS (default)

BGP Path Selection Algorithm (continued)

- Prefer eBGP path over iBGP path
- Path with lowest IGP metric to next-hop
- For eBGP paths:

If multipath is enabled, install N parallel paths in forwarding table

If router-id is the same, go to next step

If router-id is not the same, select the oldest path

BGP Path Selection Algorithm (continued)

- Lowest router-id (originator-id for reflected routes)
- Shortest cluster-list

Client must be aware of Route Reflector attributes!

Lowest neighbour address

Applying Policy with BGP

How to use the "tools"

Cisco ISP Workshops

© `2005, Cisco Systems, Inc. All rights reserved.

Applying Policy with BGP

- Policy-based on AS path, community or the prefix
- Rejecting/accepting selected routes
- Set attributes to influence path selection
- Tools:
 - **Prefix-list (filters prefixes)**
 - **Filter-list (filters ASes)**
 - **Route-maps and communities**

Policy Control – Prefix List

- Per neighbour prefix filter incremental configuration
- High performance access-list
- Inbound or Outbound
- Based upon network numbers (using familiar IPv4 address/mask format)

[no] ip prefix-list <list-name> [seq <seq-value>] deny |
 permit <network>/<len> [ge <ge-value>] [le <le-value>]

<network>/<len>: The prefix and its length

ge <ge-value>: "greater than or equal to"

le </e-value>: "less than or equal to"

Both "ge" and "le" are optional. Used to specify the range of the prefix length to be matched for prefixes that are more specific than <*network*>/<*len*>
Prefix Lists – Examples

Deny default route

ip prefix-list EG deny 0.0.0.0/0

• Permit the prefix 35.0.0/8

ip prefix-list EG permit 35.0.0/8

• Deny the prefix 172.16.0.0/12

ip prefix-list EG deny 172.16.0.0/12

• In 192/8 allow up to /24

ip prefix-list EG permit 192.0.0.0/8 le 24

This allows all prefix sizes in the 192.0.0.0/8 address block, apart from /25, /26, /27, /28, /29, /30, /31 and /32.

Prefix Lists – Examples

In 192/8 deny /25 and above

ip prefix-list EG deny 192.0.0.0/8 ge 25

This denies all prefix sizes /25, /26, /27, /28, /29, /30, /31 and /32 in the address block 192.0.0/8.

It has the same effect as the previous example

In 193/8 permit prefixes between /12 and /20

ip prefix-list EG permit 193.0.0.0/8 ge 12 le 20

This denies all prefix sizes /8, /9, /10, /11, /21, /22, ... and higher in the address block 193.0.0/8.

Permit all prefixes

ip prefix-list EG permit 0.0.0.0/0 le 32

0.0.0.0 matches all possible addresses, "0 le 32" matches all possible prefix lengths

Cisco ISP Workshops

Policy Control – Prefix List

• Example Configuration

```
router bgp 100
network 105.7.0.0
neighbor 102.10.1.1 remote-as 110
neighbor 102.10.1.1 prefix-list PEER-IN in
neighbor 102.10.1.1 prefix-list PEER-OUT out
ip prefix-list PEER-IN deny 218.10.0.0/16
ip prefix-list PEER-IN permit 0.0.0.0/0 le 32
ip prefix-list PEER-OUT permit 105.7.0.0/16
ip prefix-list PEER-OUT deny 0.0.0.0/0 le 32
```

Policy Control – Filter List

- Filter routes based on AS path
- Inbound or Outbound
- Example Configuration:

```
router bgp 100
network 105.7.0.0
neighbor 102.10.1.1 filter-list 5 out
neighbor 102.10.1.1 filter-list 6 in
!
ip as-path access-list 5 permit ^200$
ip as-path access-list 6 permit ^150$
```

Policy Control – Regular Expressions

• Like Unix regular expressions

- Match one character
- * Match any number of preceding expression
- + Match at least one of preceding expression
- **^ Beginning of line**
- **\$** End of line
 - Beginning, end, white-space, brace
 - Or
- () brackets to contain expression

Policy Control – Regular Expressions

• Simple Examples

*	match anything
.+	match at least one character
^\$	match routes local to this AS
_1800\$	originated by AS1800
^1800_	received from AS1800
1800	via AS1800
_790_1800_	via AS1800 and AS790
(1800)+	multiple AS1800 in sequence (used to match AS-PATH prepends)
\(65530\)	via AS65530 (confederations)

Policy Control – Regular Expressions

Not so simple Examples

 ^[0-9]+\$
 Match AS_PA

 ^[0-9]+_[0-9]+\$
 Match AS_PA

 ^[0-9]*_[0-9]+\$
 Match AS_PA

 ^[0-9]*_[0-9]*\$
 Match AS_PA

^[0-9]+_[0-9]+_[0-9]+\$ _(701|1800)_

1849(.+_)12163\$ AS12163 AS1849 Match AS_PATH length of one Match AS_PATH length of two Match AS_PATH length of one or two Match AS_PATH length of one or two (will also match zero) Match AS_PATH length of three Match anything which has gone through AS701 or AS1800 Match anything of origin

and passed through

- A route-map is like a "programme" for IOS
- Has "line" numbers, like programmes
- Each line is a separate condition/action
- Concept is basically:

if *match* then do *expression* and *exit* else

if match then do expression and exit

else etc

- Lines can have multiple set statements but only one match statement
- Line with only a set statement all prefixes are matched and set any following lines are ignored
- Line with a match/set statement and no following lines

only prefixes matching go through the rest are dropped

Route Maps – Caveats

Example

omitting the third line below means that prefixes not matching list-one or list-two are dropped

```
route-map sample permit 10
match ip address prefix-list list-one
set local-preference 120
!
route-map sample permit 20
match ip address prefix-list list-two
set local-preference 80
!
route-map sample permit 30 ! Don't forget this
```

• Example Configuration – route map and prefix-lists

```
router bgp 100
neighbor 1.1.1.1 route-map infilter in
!
route-map infilter permit 10
match ip address prefix-list HIGH-PREF
set local-preference 120
!
route-map infilter permit 20
match ip address prefix-list LOW-PREF
set local-preference 80
!
ip prefix-list HIGH-PREF permit 10.0.0.0/8
ip prefix-list LOW-PREF permit 20.0.0.0/8
```

Example Configuration – route map and filter lists

```
router bgp 100
neighbor 102.10.1.2 remote-as 200
neighbor 102.10.1.2 route-map filter-on-as-path in
route-map filter-on-as-path permit 10
match as-path 1
 set local-preference 80
route-map filter-on-as-path permit 20
match as-path 2
 set local-preference 200
I
ip as-path access-list 1 permit 150$
ip as-path access-list 2 permit 210
```

Example configuration of AS-PATH prepend

router bgp 300
network 105.7.0.0
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 route-map SETPATH out
!
route-map SETPATH permit 10

- set as-path prepend 300 300
- Use your own AS number when prepending
 Otherwise BGP loop detection may cause disconnects

 Route Map MATCH Articles 	
as-path	ip next-hop
clns address	ip route-source
clns next-hop	length
clns route-source	metric
community	nlri
interface	route-type
ip address	tag

Route map SET Articles

 as-path
 automatic-tag
 clns
 comm-list
 community
 ip

dampening default interface interface ip default next-hop ip next-hop

Route map SET Articles ip precedence ip qos-group ip tos level **local preference** metric metric-type

next-hop nlri multicast nlri unicast origin tag traffic-index weight

Policy Control – Matching Communities

Example Configuration

```
router bgp 100
neighbor 102.10.1.2 remote-as 200
neighbor 102.10.1.2 route-map filter-on-community in
route-map filter-on-community permit 10
match community 1
set local-preference 50
ļ
route-map filter-on-community permit 20
match community 2 exact-match
 set local-preference 200
ip community-list 1 permit 150:3 200:5
ip community-list 2 permit 88:6
```

Cisco ISP Workshops

Policy Control – Setting Communities

Example Configuration

```
router bqp 100
network 105.7.0.0
neighbor 102.10.1.1 remote-as 200
neighbor 102.10.1.1 send-community
neighbor 102.10.1.1 route-map set-community out
1
route-map set-community permit 10
match ip address prefix-list NO-ANNOUNCE
 set community no-export
1
route-map set-community permit 20
match ip address prefix-list EVERYTHING
ip prefix-list NO-ANNOUNCE permit 172.168.0.0/16 ge 17
ip prefix-list EVERYTHING permit 0.0.0.0/0 le 32
```

Suppress Map

Used to suppress selected more-specific prefixes (e.g. defined through a routemap) in the absence of the summary-only keyword.

Unsuppress Map

Used to unsuppress selected morespecific prefixes per BGP peering when the summary-only keyword is in use.

Aggregation Policies – Suppress Map

Example

```
router bgp 100
network 102.10.10.0
network 102.10.11.0
network 102.10.12.0
network 102.10.33.0
network 102.10.34.0
aggregate-address 102.10.0.0 255.255.0.0 suppress-map block-net
neighbor 102.5.7.2 remote-as 200
!
route-map block-net permit 10
match ip address prefix-list SUPPRESS
!
ip prefix-list SUPPRESS permit 102.10.8.0/21 le 32
ip prefix-list SUPPRESS deny 0.0.0.0/0 le 32
```

Aggregation Policies – Suppress Map

show ip bgp on the local router

router1#sh ip bgp	>		
BGP table version is 11, local router ID is 102.5.7.1			
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal			
Origin codes: i - IGP, e - EGP, ? - incomplete			
Network	Next Hop	Metric LocPrf	Weight Path
*> 102.10.0.0/16	0.0.0.0		32768 i
s> 102.10.10.0	0.0.0.0	0	32768 i
s> 102.10.11.0	0.0.0.0	0	32768 i
s> 102.10.12.0	0.0.0.0	0	32768 i
*> 102.10.33.0	0.0.0.0	0	32768 i
*> 102.10.34.0	0.0.0.0	0	32768 i

Aggregation Policies – Suppress Map

show ip bgp on the remote router

router2#sh ip bgp					
BGP table version i	s 90, local rou	ter ID is 102.	5.7.2		
Status codes: s sup	pressed, d damp	ed, h history,	* valid	, > best,	i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete					
Network	Next Hop	Metric LocPrf	Weight	Path	
*> 102.10.0.0/16	102.5.7.1		0	100 i	
*> 102.10.33.0	102.5.7.1	0	0	100 i	
*> 102.10.34.0	102.5.7.1	0	0	100 i	

Aggregation Policies – Unsuppress Map

Example

```
router bqp 100
network 102.10.10.0
network 102.10.11.0
network 102.10.12.0
network 102.10.33.0
network 102.10.34.0
 aggregate-address 102.10.0.0 255.255.0.0 summary-only
neighbor 102.5.7.2 remote-as 200
neighbor 102.5.7.2 unsuppress-map leak-net
I
route-map leak-net permit 10
match ip address prefix-list LEAK
ip prefix-list LEAK permit 102.10.8.0/21 le 32
ip prefix-list LEAK deny 0.0.0.0/0 le 32
```

Cisco ISP Workshops

Aggregation Policies – Unsuppress Map

show ip bgp on the local router

router1#sh ip bgp)			
BGP table version is 11, local router ID is 102.5.7.1				
Status codes: s suppressed, d damped, h history, * valid, > best, i -internal				ernal
Origin codes: i - IGP, e - EGP, ? - incomplete				
Network	Next Hop	Metric LocPrf	Weight Path	
*> 102.10.0.0/16	0.0.0.0		32768 i	
s> 102.10.10.0	0.0.0.0	0	32768 i	
s> 102.10.11.0	0.0.0.0	0	32768 i	
s> 102.10.12.0	0.0.0.0	0	32768 i	
s> 102.10.33.0	0.0.0.0	0	32768 i	
s> 102.10.34.0	0.0.0.0	0	32768 i	

Aggregation Policies – Unsuppress Map

show ip bgp on the remote router

router2#sh ip bgp					
BGP table version is 90, local router ID is 102.5.7.2					
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal					
Origin codes: i - IGP, e - EGP, ? - incomplete					
Network	Next Hop	Metric LocPrf	Weight	Path	
*> 102.10.0.0/16	102.5.7.1		0	100 i	
*> 102.10.10.0	102.5.7.1	0	0	100 i	
*> 102.10.11.0	102.5.7.1	0	0	100 i	
*> 102.10.12.0	102.5.7.1	0	0	100 i	

Aggregation Policies – Aggregate Address

- Summary-only used
 - all subprefixes suppressed
 - unsuppress-map to selectively leak subprefixes
 - bgp per neighbour configuration

 Absence of summaryonly

> no subprefixes suppressed

suppress-map to selectively suppress subprefixes

bgp global configuration

BGP Attributes and Policy Control

ISP/IXP Workshops

Cisco ISP Workshops

© `2005, Cisco Systems, Inc. All rights reserved.