
Introduction to FreeBSD
(Additional Material)

PacNOG I Workshop

June 20, 2005
Nadi, Fiji

Hervey Allen
Joel Jaeggli

Outline

� Why FreeBSD.

� The World of FreeBSD.

� FreeBSD 5.3 installation.

� Command line vs. GUI.

� Configuration via files.

� FreeBSD disk paritioning.

� FreeBSD directory structure.

� How FreeBSD boots (man boot).

� Commands and programs.

� Create and remove user accounts.

� The vi editor.

Outline continued

� Configuring a network interface.

� Shutdown and restart the server – runlevels.

� Services and what is running.

� How to install software:

� packages

� ports

� source

� cvs

� File permissions. Commands “chmod” and “chown”.

� Summary

� More resources.

Why FreeBSD?

A question I'm sure most of you are asking...

==> Sparky says, “Take a look at this
discussion:”

ws.edu.isoc.org/workshops/2005/pre-SANOG-
VI/day1/whyfreebsd.html

Linux != UNIX

The World of FreeBSD

 Start here: http://www.freebsd.org/

� RELEASE (5.3 and 4.10 legacy)

� STABLE ('beta' code)

� CURRENT ('alpha' code)

� Ports

� Packages

� Documentation Project

� FreeBSD Handbook

Installing FreeBSD (5.3)

� How can you install? (FreeBSD Handbook section 2.2.6)

� A CDROM or DVD

� Floppy disks (including preconfigued install)

� An FTP site, going through a firewall, or using
an HTTP proxy, as necessary

� An NFS server

� A DOS partition on the same computer

� A SCSI or QIC tape

� A dedicated parallel or serial connection

Command Line vs. GUI

� To administer a FreeBSD server you can do this
entirely from the command line, or “shell”.

� A Graphical User Interface (GUI) is not necessary
to provide services (web, email, print, file,
database, etc.) using FreeBSD (or Linux/Unix).

� You can run multiple command line windows
(shells) at the same time.

� To use a GUI you must install the X Windows
system and a desktop environment such as Gnome
or KDE. We'll do this later in the week.

Configuration via Files

� In the Windows world most configuration takes
place inside the Windows Registry files. These are
binary database files.

� Under FreeBSD (and Linux/Unix) almost all
configuration is done using text files.

� Graphical tools to configure services under
FreeBSD simply write to a configuration file.

� To configure services you usually need to be the
system admin account, “root”, and you will often
edit text files directly.

FreeBSD Disk Organization

If you wish to understand how FreeBSD
organizes and views disks then read section
3.5 of the FreeBSD handbook for an
excellent and succinct description.

If you come to disk partitioning from a
Windows perspective you will find that
UNIX (FreeBSD, Linux, Solaris, etc.)
partitions data very effectively and easily.

In FreeBSD a “slice” is what you may consider
to be a “partition” under Windows.

FreeBSD Partition Schemes

Partition Usage

a Root partition (/)

b swap partition

c Not used for filesystems.

d Supposedly not often used.

e/f /tmp, /usr, etc...

View partition information using “df - h”
and “swapi nf o”

FreeBSD Disk Slices

Sample Output to view disk slices from
“f di sk - s”

/ dev/ ad0: 77520 cyl 16 hd 63 sec

Par t St ar t Si ze Type Fl ags

 1: 63 8385867 0x0b 0x80

 2: 8385930 8385930 0xa5 0x00
 3: 16771860 208845 0x83 0x00

 4: 16980705 61159455 0x0f 0x00

This is a 40GB disk with 3 operating systems spread
across four slices. The operating systems include
Windows 2000 (1), FreeBSD (2), Linux (3) and the 4th
partition is a DOS swap slice for Windows 2000.

FreeBSD Partitions in a Slice
You can see more detailed information about

your disk slices by just typing “f di sk”

To see the partitions in a FreeBSD slice use
“di skl abel / dev/ DEV”:

/ dev/ ad1s1:

8 par t i t i ons:

s i ze of f set f st ype [f s i ze bsi ze bps/ cpg]

 a: 524288 0 4. 2BSD 2048 16384 32776

 b: 2045568 524288 swap

 c: 122865057 0 unused 0 0 # " r aw" par t , don' t edi t

 d: 524288 2569856 4. 2BSD 2048 16384 32776

 e: 524288 3094144 4. 2BSD 2048 16384 32776

 f : 119246625 3618432 4. 2BSD 2048 16384 28552

FreeBSD Partitions in a Slice cont.

To view slice partition information in a more
“human” readable format use “df - h”. This
can, however, be misleading. For example:

Fi l esyst em Si ze Used Avai l Capaci t y Mount ed on

/ dev/ ad1s1a 248M 35M 193M 15% /

devf s 1. 0K 1. 0K 0B 100% / dev

/ dev/ ad1s1e 248M 526K 227M 0% / t mp

/ dev/ ad1s1f 55G 2. 7G 48G 5% / usr

/ dev/ ad1s1d 248M 42M 186M 18% / var

/ dev/ ad1s2 55G 15G 38G 28% / dat a

/ dev/ da0s1 500M 226M 274M 45% / mnt / f l ash

Use “swapi nf o” to see the swap partition:
Devi ce 1K- bl ocks Used Avai l Capaci t y
/ dev/ ad1s1b 1022784 124 1022660 0%

FreeBSD Directory Structure

Repeat after me:
“The command 'man hi er ' is your friend.”

So, why is your FreeBSD disk partition split in
to “slices”? Largely to separate important
file systems from each other. These
filesystems are usually represented by
specific directories.

Why not just run with everything in one
place? That is, everything under root (/).

FreeBSD Directory Structure cont.

Advantages of a single filesystem:

� Easier to resize if you want to make it larger.

� Easier conceptually for some people.
Advantages of multiple filesystems:

� If one system fails other systems can still work:

� User fills up disk with runaway program.

� Power failure only damages one file system.

� FreeBSD can optimize layout of files based on
the use for the filesystem.

� Logical separation of functionality, thus
improving security. I.E. root can be read only.

A Few FreeBSD Directories

� Structure of partitions/directories:

� / (“root”)

� /usr

� /var

� swap

� Two important directories:

� /var/tmp

� /usr/home

“/” Root

The root partition is where critical system files
live, including the programs necessary to
boot the system in to “single user” mode.

The idea is that this part of the system does
not grow or change, but rather stays isolated
from the rest of the operating system.

If you give enough room to /usr and /var,
then “/” can be quite small (around 512MB
should be safe for now).

The one directory that may grow is /tmp,
particularly if you run Linux binaries that
use /tmp.

/usr

Is used for system software like user tools,
compilers, XWindows, and local repositories
under the /usr/local hierarchy.

If one has to expand* this partition for
additional software, then having it separate
makes this possible.

FreeBSD maps user directories to /usr/home.

*We'll discuss this. We don't always install FreeBSD with a separate /usr partition.

/var

This is where files and directories that
consistently change are kept. For example,
webserver logs, email directories, print
spools, temporary files, etc.

On a server it is a good idea to have /var in a
separate partition to avoid having it fill your
other filesystems by accident.

swap

Swap is where virtual memory lives. Swap is
it's own filesystem.

You can run without swap, and your PC may
run faster, but this is dangerous if you run
out of memory.

There are several opinions about what is the
optimal swap size. This can depend on what
type of services you run (databases need
more swap). The general rule of thumb is
that swap size should be somewhere
between your RAM and twice your server's
RAM.

How FreeBSD Boots

The init process:

� After the kernel boots, which is located in “/” (in
Linux it's usually /boot) it hands over control to
the program /sbin/init.

� If filesystems look good then init begins reading
the resource configuration of the system. These
files are read in this order:

� /etc/defaults/rc.conf

� /etc/rc.conf (overrides previous)

� /etc/rc.conf.local (overrides previous)

� Mounts file systems in /etc/fstab

How FreeBSD Boots cont.

The init process cont.:

� Once file systems are mounted then the
following starts:

� Networking services

� System daemons

� Locally installed package daemons
(/usr/local/etc/rc.d scripts)

Init process and shutdown:

� When shut down is called then init runs the
scripts /etc/rc.shutdown.

Commands - Programs – Shell – Path

What's a “command” and a “program”?
Why can't you always run all commands and

programs on a system?
How do you “fix” this?
How do you see how things are configured for

a user?

� /usr/share/skel

� /etc/profile

� /home/user/.bashrc

� /home/user/.bash_profile

� set, printenv, export

Basic Commands

� cp, cd*, ls, mkdir, mv, rm y man

� (*built in command shell commands).

� Where are commands located?

� /bin, /usr/bin, /usr/local/bin, /sbin, /usr/sbin

� The difference between “sbin”, “bin” and “
/usr”

� If you know DOS:

� cp = copy

� cd/chdir = cd/chdir

� ls = dir

� mkdir = mkdir

� mv = move (before it was copy and delete/erase)

� rm = del[ete] and/or erase

Create, Remove, Update User
Accounts

(FreeBSD Handbook section 8.6)

User Creation and Maintenance

� passwd, pw, vipw

Some Associated Files

� /etc/passwd, /etc/group, /etc/master.passwd,
/etc/sudoers (note visudo)

� /usr/share/skel

� /var/mail

/etc/passwd

The /etc/password file has the following
format:

her vey: x: 500: 500: Her vey
Al l en: / home/ her vey: / usr / l ocal / bi n/ bash

i.e.:
user : pw: UI D: GI D: name: di r ect or y: shel l

Using /etc/master.passwd the “pw” is
represented by an “x”. If the user entry is
actually something like a service, then the
“shell” is represented with “/sbin/nologin”.

/etc/master.passwd

This file is used to hide encoded user passwords.
Only root can (or should) read this file. /
etc/pwd.db is a Berkeley db password database
that is used by most applications for efficient user
authentication.

/etc/master.passwd has the following format:
her vey: 1qvAgYWGD$nLf / LpT1r 0XXXXXXj MC/ : 1001: 1001: : 0: 0: Her vey

Al l en: / home/ her vey: / usr / l ocal / bi n/ bash

i.e.:

� User's login name.

� Users encoded password. If starts with “1” it's md5 encyrpted.

� User's ID number.

� User's login group ID.

� User's classification (unused).

/etc/master.passwd cont.

her vey: 1qvAgYWGD$nLf / LpT1r 0XXXXXXj MC/ : 1001: 1001: : 0: 0: Her vey
Al l en: / home/ her vey: / usr / l ocal / bi n/ bash

� Password change time. (0 means never)

� When the account expires (0 means never)

� General user information (like full name...)

� User's home directory.

� User's login shell.

The vi Editor

� Why use vi? Why not emacs, xemacs, joe,
pico, ee, etc.? (Ask me about “pico -w”)

� vi exists in almost all flavors of Unix and
Linux.

� If you have to work on a new machine, then
vi will almost always be available to you.

� In reality, you are likely to use a different
editor for more complex editing, but we will
practice using vi after we install FreeBSD.

Configuring Network Interfaces

During boot if a NIC is recognized then the
appropriate code is loaded to support the
NIC (a module).

After boot, using “i f conf i g” you can see if
the NIC exists. Look for MAC address.

Initial NIC configuration can be done with
i f conf i g, or try “dhcl i ent dev”

If NIC works, edit /etc/rc.conf and put in
device specific entries for each boot.

Configuring Network Interfaces cont.

Example lines in /etc/rc.conf for network
device:

host name=” l ocal host . l ocal domai n”

i f conf i g_wi 0=” DHCP”

Set the hostname and indicate that NIC “wi 0”
will use DHCP to get network information.
FreeBSD uses specific names for each
network device. “wi 0” indicates the first
“Wireless” card.

Shutdown and Restart a Server

How do you shutdown a FreeBSD box?

� shutdown 1 message

� halt

� init 0

And, to restart?

� reboot

� shutdown -r now

� init 6

Run Levels

FreeBSD has the concept of run levels:
 Run- l evel Si gnal Act i on

 0 SI GUSR2 Hal t and t ur n t he power of f

 1 SI GTERM Go t o si ngl e- user mode

 6 SI GI NT Reboot t he machi ne

So, in reality, you either run in single-user
mode with “everything off” and just root
access (run-level 1), or your system is up
and fully running in multi-user mode.

Run Levels cont.

Order of what's run in multi-user mode:

� /etc/defaults/rc.conf (scripts in /etc/rc.d correspond).

� Local overrides from /etc/rc.conf.

� Filesystems mounted as described in /etc/fstab.

� Third party services with installed startup scripts run
from /usr/local/etc/rc.d.

Most local settings will go in:

/etc/rc.conf

What's Running on a System

� To view all services:

� ps - aux | mor e

� To view a particular service

� ps - aux | gr ep “ name”

Note the “|” character... This is how we
“connect” the results of one command to
another command.

Software Install Methods

There are three methods to install software on
your FreeBSD system. These are:

1.) FreeBSD packages and the pkg utility.

2.) The ports collection /usr/ports.

3.) Installing from source (gcc make).

You are most likely to install from packages,
then ports, then from source.

There are advantages and disadvantages to
each.

The “pkg” Commands

In general the pkg_add and pkg_delete
facilities allow you to install and remove
software on your system in an efficient and
consistent manner.

The pkg_info command allows you to see
what's installed, quickly, and to get detailed
information about each software package
that is installed.

Package Installation Using pkg_add

� You can get “packages” from local source (a CD), off
FreeBSD sites, or your local network.

� To install a package from a CD-ROM:

pkg_add / cdr om/ di r / package_name

� To install from an ftp server you can do:

pkg_add f t p: / / addr ess/ di r / package_name

Using pkg_info

Find out if something is already installed:
pkg_i nf o (l i st al l i nst al l ed packages)

pkg_i nf o | gr ep moz (f i nd al l packages
 cont ai ni ng “ moz”)

Get more information about an already
installed package:

pkg_i nf o name\ *

pkg_i nf o - I name\ *

For example “ pkg - I bash\ * ” returns:
bash- 2. 05b. 007_2 The GNU Bour ne Agai n Shel l

Using pkg_delete

If you have a package you wish to remove you
can simply type:
pkg_del et e package_name

But, if you want to remove the package and
all its dependent packages you would do:

 pkg_del et e - r package_name

But, be careful about doing this. You might
want to check what will happen first by
doing:

pkg_del et e - n package_name

Installing from Ports

First you must have installed the /usr/ports
collection during system installation. Otherwise,
use /stand/sysinstall after installation and then
choose Configure, Distributions, then Ports.

Once the “ports collection” is installed you can see
the entire tree under /usr/ports. There are several
thousand software packages available.

This collection contains minimal information so that
you can “make” a software package quickly, and
easily from separate CD-ROMs or a network site
containing the port source.

See section section 4.5 of the FreeBSD Handbook.

Installing from Ports cont.

To see if a software package exists as a port:
cd / usr / por t s
make sear ch name=package
make sear ch key=keywor d

Let's do this for “lsof” (LiSt Open Files):
cd / usr / por t s
make sear ch name=l sof (or “ wher ei s l sof ”)

And the output from this is:
Por t : l sof - 4. 69. 1
Pat h: / usr / por t s/ sysut i l s / l sof
I nf o: Li st s i nf or mat i on about open f i l es (s i mi l ar t o f s t at

(1))
Mai nt : obr i en@Fr eeBSD. or g
I ndex: sysut i l s
B- deps:
R- deps

Installing from Ports cont.

From the previous page you'll note that the
port is in /usr/ports/sysutils/lsof.

If you have a network connection...

You can simply type “make i nst al l ”

But, you might want to do:

� make

� make i nst al l

To automatically get ports from a local server you
can do this by changing a system variable:

� expor t MASTER_SI TE_OVERRI DE=” f t p: / / l ocal . s i t e/ di st f i l es/ f et ch”

Installing from Ports cont.

You can install from cdrom. If you have a cdrom with
the full ports distfiles, then simply mount it. Then
you would do:

� cd / usr / por t s/ sysut i l s / l sof

� make

� make i nst al l

And the port will find the distfile on /cdrom instead of
from the internet.

Installing from Source

It's likely you'll want to install software that's
either not available as a package or port, or
that you need to change or reconfigure
before installation.

In such cases, you need to compile the
software from source code.

It's very typical that software comes as a
single “tar” archive that is compressed
(tar.gz or .tgz)

An example of how to install from source -->

Installing from Source cont.

� Download a file fn.tar.gz to /usr/src.

� tar -xvzf /usr/src/fn.tar.gz

� cd /usr/src/fn-version

� ./configure

� make

� make install

This is if everything works, but now you don't
have any good way to uninstall the
software...

CVS and CVSUP

One issue that arises, “How to keep your ports
collection up-to-date?”

CVS, or Concurrent Versions System, can do
this for you.

First you must install cvsup, then you can tell
this tool to look on a server that has the latest
ports collection and update your local
collection with a single command like:

cvsup - g - L 2 - h cvsup.freebsd.org \
/ usr / shar e/ exampl es/ cvsup/ por t s- supf i l e

CVS and CVSUP cont.

Later today we'll update the ports collection on
your machines using a local CVS server that we
have installed.

Rather than cvsup.freebsd.org we'll use a local
machine for this.

File Permissions

� There are five categories and three types of
permissions that you need to consider.

� The default file permissions are set with the umask
command.

� There are two categories of permissions that relate
to the user or group that is going to run a file
(setuid, setgid).

� Available access permissions are “r” (read), “w”
(write), and “x” (execute).

� You can assign permissions to world (a), group (g),
and user (u).

File Permissions cont.

� A file belongs to a user. You can assign a file to
another user or another group using the chown
(“CHange OWNer”) command.

� You can change permissions and/or owners for a
group of files or for all files and all files in
subdirectories using the chmod and chown
commands.

� Finally, you can change directory permissions
using the chmod command.

� We will practice using file permissions later today.

Summary

� Aimed at stability not user desktops.

� Very, very good track record for stability and
security.

� Scales to very large sizes for services.

� Large collection of software, including ability to
run Linux packages.

� GUI is not necessary to provide services.

� Software can be installed in several ways.

� Configuration is done using simple text files.

More resources

This presentation is located here:
http://ws.edu.isoc.org/workshops/2005/pre-SANOG-VI/day1/

� http://www.freebsd.org/

� http://www.google.com/

� http://www.freebsd.org/support.html

� O'Reilly books (http://www.oreilly.com/)

� http://www.freshports.org/

� http://www.freebsddiary.org/

� SANOG mailing list (sanog@sanog.org)

� SANOG web site: http://www.sanog.org/

