

Introduction to Cloud Computing

Philip Smith <pfs@cisco.com>
PacNOG 7
Pago Pago, American Samoa
28th June 2010

Introduction

- This is all about DataCentres
 - And scaling DataCentres
 - And scaling the enterprise's use of DataCentres
 - And scaling the consumer's interaction with on-line data/content
- Cloud Computing is not:
 - A new type of computer
 - A new type of networking device
 - An abstract computer
 - Using your laptop in an aeroplane

Data Centres

Internet is about content

Users see websites and e-mail = Internet

Traditional model

ISP provides email services:

POP3, IMAP, Webmail

ISP provides hosting services:

Customers host content on ISPs servers (either sharing web server, using dedicated webserver, or using dedicated hardware)

• But how to scale these services?

And provide redundancy as these services scale?

Scaling Data Centres

ISPs can duplicate data centres:

To provide redundancy

One live, the other hot standby

Both operating live at the same time – customer uses nearest

To provide scalability

Operating all sites at the same time ensures that one site is not overloaded

Load-balancers used as front end to content

Where does all this lead to?

Where does this lead?

 Service Providers operating multiple datacentres with multiple servers

All redundant

Customers get access to different classes of server

Shared address – virtual hosting, by context small

Unique address – virtual machine medium

Unique hardware – dedicated machine large

 Content providers developing services based around these concepts

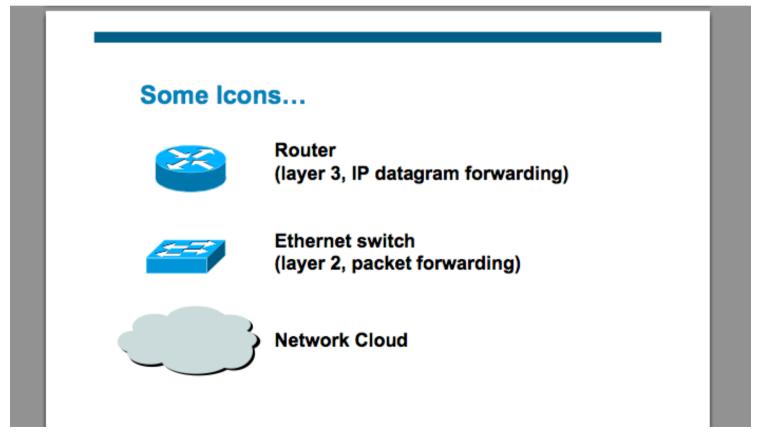
The end-user no longer has visibility of the individual pieces which make up their content

Cloud Computing

From wikipedia:

Cloud computing is Internet-based computing, whereby shared resources, software, and information are provided to computers and other devices on demand, like the electricity grid.

 Or put another way, "The Cloud" is a simple reference to the Internet itself


The Internet being the service that users see, rather than the individual components that make it up

Some describe this as a paradigm shift

In reality it is more like that the Internet has grown up and is now the ubiquitous content and communications infrastructure in the way that the telephony network was "The Cloud" in the past

By the Way: Network Cloud

 For decades we've referred to network topologies and devices that make up the network as a Cloud:

The Cloud – Examples

Typical Examples of components of "The Cloud" might include:

Facebook Social Networking

Yahoo!/Google/Microsoft Email, Search, News, Content

Amazon Commerce

Salesforce.com Customer relationship management

In fact any globally distributed content provision operation

 These are public examples – there are also private clouds where businesses use "The Cloud" for their internal IT needs

Cloud Computing – Services

- Cloud Computing (Cloud) offers IT/Network infrastructures, platforms, software or applications as utility like services
- It is identified by three major services

Infrastructure as a Service (laaS)

Compute, Storage and Network resources as service

Users: Enterprise/End-user Admins, Consumers

Platform as a Service (PaaS)

Software middleware services and development and testing platforms as service

Users: Software Developers

Software as a Service (SaaS)

Software applications as service

Users: Enterprise/End-user Admins, Consumers. Software Developers

Infrastructure as a Service

- An enterprise uses a "cloud infrastructure" as their IT service
- In reality this would be:

Servers

Storage

CPU power/processing – aka computing

Outsourced to, hosted at and administered by a hosting provider

Who takes care of administration & management

Who takes care of backups & redundancy

Who takes care of security

 Releasing the enterprise IT to concentrate on more strategic operational issues

Platform as a Service

 Rather than providing a whole datacentre service, PaaS provides software platforms

Targeted at software developers primarily

They don't have to buy expensive software development platforms, rather lease time on the "Cloud" service

- Developers use SDK (software development kits) provided by the PaaS
- Examples of PaaS might include:

Google AppEngine

Microsoft Azure

Amazon SimpleDB

Software as a Service

- Fully finished software products are offered as a service
- Rather than buying a software product outright, an enterprise would buy into the SaaS organisation's "Cloud" offering

Outsourced, accessing their software & function via the Internet

Examples of SaaS might include:

SalesForce.com

Provide customer relationship management software (used by an enterprises sales teams) for account management

WebEx

Video/Audio Conferencing system and collaboration tool

Google

Categories of Clouds (1)

Public Cloud

A service owned an operated by an ISP or Content provider, available and accessed over the Internet, for use by the general public

Sometimes called an "external cloud"

Private Cloud

A service owned and operated by an enterprise IT department, for that enterprise's internal users (departments, staff, etc)

(Benefit is not clear as the enterprise still has to build, own and operate the environment)

Sometimes called an "internal cloud"

Virtual Private Cloud

A private cloud operated by a service provider and provided for enterprise use over the public network (compare with VPN)

Categories of Clouds (2)

Hybrid Cloud

A cloud infrastructure providing a mix of the features of private and public clouds

Usually this is a cloud delivered by internal and external service providers (common situation for most enterprises)

Community Cloud

A cloud infrastructure which is used by a small group of organisations all having similar requirements

More secure than public cloud without the restriction of private cloud – and easier to spread the costs across participating organisations

Inter-Cloud

Any interaction between any of the above types of cloud

Major features & characteristics

 Cloud customers are offered abstracted and virtualised services:

Offload IT operations

CAPEX and OPEX savings

Cost-effective use of resources

Built-in business continuity and disaster recovery

Pay per use model

Service and Resource CRUD is immediate and fast

(CRUD = Create Read Update Delete)

Flexibility

Services and resources scale according to requirements

Being a Cloud Provider

- The next step for the DataCentre operator
- Considerations:

Multiple sites

Hardware (switches/routers/servers)

Software (virtual machines, IPv4/IPv6)

Server virtualisation

Server and site redundancy

Service offerings

Security (Virtual Private Clouds versus Public Clouds)

Being a Cloud Provider

Consumer/User Trust

Where is my data and who else can see it?
Can I get my data at all times and all places?

Enterprise IT

Availability – this has to be better than running my IT department internally

Security – critical if using VPCs or any non-private cloud

Performance – the Internet is underlying transport

Summary

- Cloud Computing
 - **Scaling Datacentres**
 - Virtualised Datacentres

The next big "marketing" concept for the Internet to describe the ongoing scaling and distribution of content provision and services around the world